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Abstract

Nóbrega, Filipe Bellio da; Craizer, Marcos (Advisor); Ghys,
Étienne (Co-Advisor). On Osculating Conics in the Real
Projective Plane. Rio de Janeiro, 2025. 193p. Tese de Doutorado
– Departamento de Matemática, Pontifícia Universidade Católica
do Rio de Janeiro.

We investigate how the osculating conics of a regular curve in the real projective
plane evolve as one traverses the curve. The Tait-Kneser Theorem states that if
the curve has no inflection or vertex, then the osculating circles do not intersect
and are nested, that is, the smaller osculating circle is contained in the bounded
region defined by the larger circle. We generalize this result by proving that
if the curve has no inflection or sextactic point, then its osculating conics are
convexly nested.

In addition, we compute the first and second terms of the power series of
the J-invariant of the binary quartic related to a pair of osculating conics of
an arbitrary curve. Finally, we show that given a pair of harmonically nested
conics u, v, there exists a zero projective curvature logarithmic spiral that has
u and another conic of the pencil generated by u and v as its osculating conics.

Keywords

Real pencil of conics; Convex binary quartics; Blenders; Projective spiral.



Resumo

Nóbrega, Filipe Bellio da; Craizer, Marcos; Ghys, Étienne. Cônicas
Osculatrizes no Plano Projetivo Real. Rio de Janeiro, 2025.
193p. Tese de Doutorado – Departamento de Matemática, Pontifícia
Universidade Católica do Rio de Janeiro.

Nós investigamos como as cônicas osculatrizes de uma curva regular do plano
projetivo real evoluem à medida que percorremos a curva. O Teorema de Tait-
Kneser afirma que se uma curva não tem inflexão ou vértice, então seus círculos
osculadores são disjuntos e aninhados, ou seja, o círculo menor é contido na
região limitada definida pelo círculo maior. Nós generalizamos esse resultado
ao provar que se uma curva não tem inflexão ou ponto sextático, então as
cônicas osculatrizes são convexamente aninhadas.

Além disso, nós calculamos os dois primeiros termos da série de potências do
invariante-J da quártica binária associada a um par de cônicas osculatrizes de
uma curva arbitrária. Finalmente, nós mostramos que dado um par de cônicas
harmonicamente aninhadas, u, v, existe uma espiral logarítmica de curvatura
projetiva zero que tem u e outra cônica do feixe gerado por u e v como suas
cônicas osculatrizes.

Palavras-chave

Matemática - Teses; Feixe real de cônicas; Quártica binárias convexas; Cones
de polinômios homogêneos; Espirais projetivas.
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degraus.

Hermann Hesse, Siddhartha.



Introduction

The main goal of this thesis is to study the behaviour of the osculating conics of
a regular curve in the real projective plane. More precisely, we investigate how
they evolve as one traverses the curve. The analogous problem for osculating
circles is well known and is the subject of the so called Tait-Kneser Theorem,
which states that if the curve has no inflection or vertex, then the osculating
circles do not intersect and are nested, that is, the smaller osculating circle is
contained in the bounded region defined by the larger circle. In Chapter 1 we
explain in more details the case of osculating circles and also provide a new
proof of Tait-Kneser Theorem.

Then, we introduce the tools we shall use to achieve the generalization for
the case of osculating conics. In Chapter 2 we first present another interesting
setting where a given curve is approximated by a certain family of curves,
namely how the Taylor polynomials approach the graph of a smooth function.
This revealing scenario shows us that the condition on the relative position of
the osculating curves at two distinct points can be more subtle than one might
expect. In the case of the Taylor polynomials, for instance, if a real function
f has a derivative of an odd order n ≥ 3 that is positive in an interval I,
then for any two points a < b ∈ I, the Taylor polynomials of degree n − 1
that osculate the graph of f at these points have a difference Tb(x) − Ta(x)
that must be positive and convex in the entire real line. The fact that this
difference is positive indicates that the two approximations do not intersect,
just like the osculating circles, but the less evident property is the convexity of
Tb(x) − Ta(x). Motivated by this example, we move to the study of the space
of homogeneous polynomials, as we intend to use them in order to analyse
the relative position of the osculating conics. More specifically, we use binary
quartics to describe such relation. It is of particular importance a certain type
of structure in the space of homogeneous polynomials called blenders, due to
its invariance under the action of PGL(2;R) by linear change of variables.
Finally, we present another property that remains invariant under projective
transformations, the cross-ratio of the roots of the binary quartic. We explain
this phenomenon in detail and also characterize the convex binary quartics via
the cross-ratio of its roots.
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In Chapter 3 we prove that every nondegenerate conic in the real projec-
tive plane admits a quadratic parametrization and also show that all such
parametrizations belong to the same PGL(2;R) orbit. Then, by combining the
quadratic parametrization of the first conic with the implicit equation of the
second one, we obtain the binary quartic that describes the projective relative
position of the ordered pair. This is the main tool we use to prove the novel
results in the following chapters.

We define what it means for a conic to be convexly nested with respect to
another conic in Chapter 4. This is a stronger condition than the simple
nesting that we observe for the osculating circles. Then we prove one of the
main theorems of this thesis: If a smooth curve in the real projective plane
has no inflection nor sextactic point, then its osculating conics are disjoint and
convexly nested.

In Chapter 5, we seek to give both algebraic and geometric descriptions of what
it means for a conic to be convexly nested with respect to another conic. By
employing a powerful technique of simultaneous diagonalization, we reduce the
dimension of the space of pairs of conics, rendering our analysis much more
manageable. In the end, we reach a normal form that depends on a single
parameter λ. Next, we introduce the algebraic invariants of binary quartics and
use them to characterize the convexity of the corresponding form. Finally, we
present another original result, we give the first two terms of the power series
around zero of the J-invariant and the K-invariant of the quartics arising
from the osculating conics of any regular curve away from an inflection or
sextactic point. Surprisingly, the limiting value for the J-invariant is 32/27,
which is greater then the extreme value that implies convexity, which is 1.
This unexpected result motivated us to coin the term harmonic nesting for
when the quartic coming from a pair of conics has its J-invariant greater than
32/27.

To conclude the thesis, we explore in Chapter 6 the family of curves with
constant projective curvature. There we face the following reciprocal problem:
Given two conics in the real projective plane, under which conditions can we
find a smooth curve with no inflections or sextactic points that joins these
conics, that is, so that both of them are osculating conics of the curve at two
distinct points? We manage to prove the following partial solution: If the two
conics u and v are harmonically nested, then there exists a zero projective
curvature logarithmic spiral that has u and another conic of the pencil uv as
osculating conics. We also show that for such a curve, there cannot be three
osculating conics in the same pencil.
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We provide in Appendix A a broad overview of the space of pencils of conics,
both in the real and complex settings. We present and prove a complete
classification of the orbits under the actions of the respective projective groups
PGL(3;R) and PGL(3;C). In addition, we analyse the stabilizer subgroup of
a generic element of the orbit and also discuss the orbits of marked pencils of
conics, where either one or two conics of the pencil are highlighted.

As a whole, the relevance of this thesis stems from the employment of different
concepts and techniques in order to deepen our understanding about the
osculating conics of a regular curve in the projective plane. Besides the proofs
of new theorems, the establishment of new connections between concepts
provides original perspectives that we hope may be fruitful for even further
developments of the theory in the future.



1

Osculating Circles

1.1

Local approximation of a curve using circles

Our investigation begins with a regular curve on the plane γ : R → R2 and
with some set of curves C. First, we wish to find, for each point γ(s), the
curve c ∈ C that best approximates the original one locally, that is, in a small
neighbourhood of γ(s). The nature of the problem at hand depends on which
family of curves C we choose to begin with. We may, for example, appoint the
family of lines on R2 as C, in which case we get the tangent line at γ(s) as the
solution for the problem. Our main interest is in understanding and describing
how these curves of best contact evolve as we traverse the curve γ. When C is
the family of circles, the Tait-Kneser Theorem states how the osculating circles
of an arc evolve in general. This classic result indicates that there might be
some interesting structure to be found for each family of curves we choose to
analyse. The aim of this thesis is to investigate and describe the behaviour of
the osculating conics of a regular curve γ.

-3 -2 -1 0 1 2 3

-2

-1

0

1

2

3

Figure 1.1: Osculating circles of a logarithmic spiral.
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Theorem 1.1.1 (Tait-Kneser). Let γ : R → R2 be a smooth curve with no
inflection point and with monotonic curvature. Then the osculating circles of γ
are pairwise disjoint and nested, that is, they do not intersect and the smaller
circle is contained in the bounded region defined by the bigger circle.

Proof. The original proof presented by Peter Tait in 1896 [Tait] is concrete and
straightforward. Consider the evolute of γ and observe the osculating circles at
two points. Their centers belong to the evolute and the difference between the
radii is the length of the evolute between the two centers. Since the length of
the line segment joining these two points is shorter than the evolute, the sum
of the length of this segment with the smaller radius is less than the bigger
radius, thus the circles are nested.

Figure 1.2: Evolute (orange) of an arc of ellipse (blue).

However, this approach does not suggest a path for generalization, so we will
present a new proof in a more modern language by considering a moduli space
of circles. During the development of this work, G. Bor, C. Jackman and S.
Tabachnikov published an article [Bor] also with a new proof of Tait-Kneser
Theorem employing a similar technique as the one we present below. We are
grateful for the interesting conversations we had on the subject.

The idea is to define a differentiable manifold where each point represents
an oriented circle in R2, and such that certain geometric properties in this
manifold are in direct relation to the phenomena we wish to understand about
the original circles. Once we understand how the proof works in the space of
circles, we can proceed to the moduli spaces of conics.
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1.2

The Space of Circles

The moduli space of circles in R2, and more generally, the space of spheres
Sn in Rn+1, have been studied and described by Sophus Lie, and thus their
geometrical theory was named Lie Sphere Geometry. The following description
is found in the work of Thomas Cecil [Cecil] on the subject.

To define a circle in the plane, we need 3 parameters, as we must determine
its center (x0, y0) ∈ R2 and its radius r > 0, so we anticipate a 3-dimensional
manifold for the desired moduli space. Let us take R3 with coordinates (x, y, z)
and associate the plane z = 0 with the original plane R2. Now, given a circle
in this plane, we can relate it to a unique point u = (x0, y0, r) in the upper
half-space H+ = {(x, y, z) ∈ R3 | z > 0} simply by joining the coordinates of
its center and its radius. This relationship also works in the other direction,
and we can see it geometrically: by taking any point u in this half-space, if
we consider the right cone whose vertex is at u and having an angle of π/4
with the base plane, its intersection with the plane z = 0 gives us the circle
associated with u. Thus, we already have a bijection between circles in R2 and
the upper half-space.

The construction so far does not take into account the orientation of
the circles. Fortunately, we have at our disposal the other half-space
H− = {(x, y, z) ∈ R3 | z < 0}, which will allow us to work with oriented circles.
We can make the same association with an additional condition: if the circle is
oriented in the positive direction, we take the cone with vertex u+ = (x0, y0, r)
in H+, whereas if it is oriented in the negative direction, we take the cone
in the other half-space, so with vertex u− = (x0, y0,−r). This establishes the
bijection between oriented circles in the plane and points in H+ ∪H−.

Another way to interpret this representation is to assume that we have circles
of “positive radius” and circles of “negative radius”, which correspond to the
two possible orientations. We may further extend our model and define “circles
of radius 0”. Seen as limiting elements, they correspond naturally to points of
R2, more specifically, the circle with center p = (x0, y0) and radius 0 is just
the point (x0, y0) ∈ R2 and it may even be described by the limiting algebraic
equation: (x− x0)2 + (y− y0)2 = 0. Notice that the circles of radius 0 fittingly
do not admit an orientation. Finally, we have a bijection between R3 and the
circles in R2 with signed radius.
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Figure 1.3: Two oriented circles represented by their points in the moduli space.

In reality, this construction is still incomplete compared to the moduli space
described by Lie. He also considers circles of “infinite radius”, which correspond
to oriented lines. In order to include them in the representation, it is necessary
to move to a projective space, as explained by Cecil in his first chapter [Cecil].
Nevertheless, the construction described above suffices for the new proof of the
Tait-Kneser Theorem.

Let us then study more deeply this space of circles represented by R3. As we
have seen, we naturally have a cone emanating from each point, which suggests
the introduction of a bilinear form of signature (2, 1), providing the structure
of a Lorentzian space. The bilinear form is defined in the tangent space at each
point, but we make the natural identification between elements of the tangent
space and vectors of the base space, since it is also a vector space. We define
the quadratic form (· ; ·) as follows: let u = (u1, u2, u3) and v = (v1, v2, v3) be
elements of R3, then:

(u ; v) = u1v1 + u2v2 − u3v3 = u⊺


1 0 0
0 1 0
0 0 −1

 v

The cones described above can be expressed by an equation using the quadratic
form. Take u ∈ R3; the points of the cone emanating from u are the v ∈ R3

such that (v− u ; v− u) = 0. Moreover, the points inside one of the two sheets
of the cone satisfy (v − u ; v − u) < 0, and the points outside give a positive
value (v − u ; v − u) > 0.

Employing the terminology of Physics, we classify the vectors in the following
way:
w ∈ R3 is timelike if (w ; w) < 0;
w ∈ R3 is lightlike if (w ; w) = 0 (w is an isotropic vector);
w ∈ R3 is spacelike is (w ; w) > 0.
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Figure 1.4: The three types of vectors defined by the quadratic form.

Now we can investigate the correspondence between the geometry of our
moduli space and the properties of the circles in the original plane. This is
precisely the benefit and the interest in working with moduli spaces. Firstly, the
quadratic form detects the oriented contact between the circles. Consider two
oriented circles and their representatives u, v ∈ R3. The two circles are tangent
and their tangent vectors at the point of contact have the same direction if
and only if v − u is isotropic, that is, (v − u ; v − u) = 0.

Figure 1.5: Circles with the same oriented tangent belong to a
lightlike direction.

If v − u is timelike, then the circles are disjoint and nested as long as u3 and
v3 have the same sign (and therefore the circles have the same orientation),
which is locally true for circles with radius r ̸= 0.
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Figure 1.6: Nested circles belong to a timelike direction.

Finally, v − u is spacelike if and only if the two circles have a pair of common
oriented tangents. Moreover, these tangents intersect exactly at the point
where the line connecting u and v intersects the plane z = 0.

Figure 1.7: Circles with a pair of common real tangents belong to a
spacelike direction.

1.3

New proof of Tait-Kneser Theorem

Once familiar with the space of circles, let us state and then prove the
Tait-Kneser Theorem.

Theorem 1.3.1 (Tait-Kneser). Let γ : (−ε, ε) → R2 be a smooth curve
in R2. If its curvature k satisfies that for every s ∈ (−ε, ε), k(s) ̸= 0 and
k′(s) ̸= 0, then the osculating circles of γ are pairwise disjoint and nested.

Proof. We may assume that γ is parametrized by arc length. In this case, the
equation of the evolute gives us the expression for the centers of the osculating
circles. Let n(s) be the normal vector to γ(s) at s and r(s) = 1/k(s) its radius
of curvature (hence the radius of the osculating circle at γ(s)). The formula
for the evolute is:
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p(s) = γ(s) + r(s)n(s).

Therefore, we have a path in the space of circles Γ(s) =
(
p(s), r(s)

)
, where p(s)

provides the first two coordinates. To prove the theorem, it suffices to show
that for all a, b ∈ (−ε, ε), the vector Γ(b)−Γ(a) is timelike, as this implies that
the corresponding circles are disjoint and nested. In order to prove this, let us
compute the derivative of Γ using the Frenet-Serret equation n′ = −kγ′:

p′ = γ′ + r′n+ rn′ = r′n.

Thus, we have the tangent vector Γ′(s) =
(
p′(s), r′(s)

)
= r′(s)

(
n(s), 1

)
.

Since r′ = −k′/k2, the hypothesis k′ ̸= 0 ensures that the curve Γ is not
singular. The fact that n(s) is unitary implies that Γ′ is always isotropic, since
(Γ′ ; Γ′) = (r′)2 (||n||2 − 1) = 0. This property yields the desired result, because
if Γ′ is always isotropic, then Γ cannot exit the isotropic cones. Formally, this
is shown with the following inequality of integrals:

Γ(b) − Γ(a) =
∫ b

a
Γ′(s)ds =

(∫ b

a
r′(s)n(s) ds ,

∫ b

a
r′(s) ds

)

=
(∫ b

a
r′(s)n(s) ds , r(b) − r(a)

)
.

Therefore,

(Γ(b) − Γ(a) ; Γ(b) − Γ(a)) < 0 ⇐⇒
∥∥∥∥∥
∫ b

a
r′(s)n(s) ds

∥∥∥∥∥ < |r(b) − r(a)|.

But ||
∫ b

a r
′(s)n(s) ds|| ≤

∫ b
a |r′(s)| ||n(s)|| ds =

∫ b
a |r′(s)| ds. In addition, the

equality holds if and only if n(s) is constant. However, this would imply
n′ = −kγ′ = 0, which contradicts the hypothesis k ̸= 0. Since r′ never
changes sign, we have:

∫ b
a |r′(s)| ds = |

∫ b
a r

′(s) ds| = |r(b) − r(a)|. Thus indeed
||
∫ b

a r
′(s)n(s) ds|| < |r(b) − r(a)|, which concludes the proof.

Figure 1.8: A curve γ and its corresponding curve of osculating circles Γ.
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Convex Binary Quartics

2.1

Osculating Polynomials

In their 2012 paper [Ghys], E. Ghys, S. Tabachnikov, and V. Timorin present
some results on osculating curves, particularly related to the Tait-Kneser
Theorem. In this article, they prove an interesting version of this theorem
for the Taylor polynomials of a real function.

Theorem 2.1.1. Let f : R → R be a real function and I an interval of
the real line. Let n = 2r be an even integer. Suppose that f is (n + 1)-times
differentiable and that for all x ∈ I, f (n+1)(x) > 0.

Then, for each a, b ∈ I, the graphs of the Taylor polynomials of degree n at a
and b, denoted Ta and Tb, are disjoint over the entire real line.

Proof. The key idea of the proof is to consider the expression of the Taylor
polynomial at t ∈ I as a function of the base point t and to compute its
derivatives.

Tt(x) =
n∑

i=0

f (i)(t)
i! (x− t)i,

∂Tt(x)
∂t

=
n∑

i=0

f (i+1)(t)
i! (x− t)i −

n∑
i=1

f (i)(t)
(i− 1)!(x− t)i−1 = f (n+1)(t)

n! (x− t)n.

Since f (n+1)(t) > 0 for all t ∈ I, we have that ∂Tt(x)
∂t

> 0 for all t ∈ I, except
for the point of contact, where ∂Tt(t)

∂t
= 0. Therefore, for any fixed x, Tt(x)

increases as a function of t. So by assuming a < b, we have that Ta(x) < Tb(x)
for all x ∈ R.
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As an example, let us examine the function f(x) = x3. Its third derivative,
f ′′′(x) = 6, is positive for every value of x ∈ R, so all of its Taylor polynomials
of degree 2 do not intersect and produce an interesting foliation of R2.

Figure 2.1: f(x) = x3 and some of its Taylor polynomials of degree 2.

The theorem above shows that, under its hypothesis, the image of the polyno-
mial Tb(x)−Ta(x) is always positive. One may then ask whether for an even n,
any positive polynomial p of degree n can be obtained as p(x) = Tb(x)−Ta(x),
for a smooth function f : R → R whose (n+ 1)-th derivative is positive on an
interval containing a and b. The answer to this question is that the condition
that p(x) is always positive is not enough to guarantee the existence of such
an f . Indeed, the fundamental theorem of calculus shows us that

Tb(x) − Ta(x) =
∫ b

a

f (n+1)(t)
n! (x− t)n dt .

The polynomial Tb(x) − Ta(x) is expressed as a barycenter of polynomials of
the form (x− t)n, so it is not only positive but also convex for even n ≥ 2. The
search for better understanding this problem led us to the study of the spaces
of homogeneous polynomials.

2.2

Homogeneous Polynomials and Blenders

2.2.1

Definition and first examples

We shall denote by Fn,d the set of homogeneous polynomial of degree d in
n variables, which are also called algebraic forms. For the purposes of our
investigation, we will later focus on the binary forms, that is, when n = 2,
and use x and y as the variables. Notice that F2,d is an n + 1-dimensional
vector space spanned by the basis {xn, xn−1y, . . . , xyn−1, yn}. However, many
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results can be established for an arbitrary number of variables as presented by
B. Reznick in his article [Reznick] from 2011 where he defines some particular
subsets of Fn,d which he named blenders. What we present in this section is a
selection of the content of Reznick’s paper that will be useful in our study of
the osculating conics. Specifically, we seek to better understand the space of
binary quartics.

The general linear group GL(n;R) acts on the space of homogeneous polyno-
mials Fn,d by linear changes of coordinates. One way to interpret this action
is to consider any element p ∈ Fn,d as a function from Rn to R, so the image
of p under the action of M ∈ GL(n;R) is the element of Fn,d associated to the
function p ◦M . More concretely, if M = (mij)n×n, then M.p ∈ Fn,d is given by

(M.p)(x1, . . . , xn) = p(l1, . . . ln), where li(x1, . . . , xn) =
n∑

j=1
mijxj.

Let us consider some particular structures in Fn,d that are invariant under the
linear change of variables. Throughout this thesis, the word cone refers to a
set C that satisfies the following property: if x ∈ C, then ∀λ ≥ 0, λx ∈ C.
As one may observe, a cone is a set comprised of half-lines stemming from the
origin 0 ∈ Fn,d, which is the vertex of the cone. We may now define the sets
that Reznick named blenders.

Definition (Blender). A closed convex cone C ⊆ Fn,d is called a blender if for
every p ∈ C, we have p ◦M ∈ C for any matrix M ∈ GL(n;R).

The assumption of being closed implies that p ◦ M ∈ C for any n × n matrix
M ∈ M(n;R), since GL(n;R) is a dense subset of M(n;R). Some fundamental
examples of blenders are the cone of nonnegative polynomials Pn,d, that of
sums of squares Σn,d, and that of sums of powers of linear forms Qn,d.

Pn,2r :=
{
p ∈ Fn,2r : u ∈ Rn ⇒ p(u) ≥ 0

}
Σn,2r :=

{
p ∈ Fn,2r : p =

s∑
k=1

h2
k, hk ∈ Fn,r

}

Qn,2r :=
{
p ∈ Fn,2r : p =

s∑
k=1

(αk1x1 + · · · + αknxn)2r, αkj ∈ R
}

In the case of binary quadratic forms, n = 2 and d = 2, all these blenders
coincide, and they contain the positive forms with nonpositive discriminant.
However, this is not the case anymore if we increase the degree. When the
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degree d is odd, all blenders are either {0} or the whole space Fn,d. So the
non-trivial blenders only occur for even-degree forms.

Hilbert proved in 1888 a result about the blenders Pn,d and Σn,d. He showed
that all positive homogeneous polynomials in n variables and of degree d

can be written as a sum of squares if and only if n = 2 or d = 2, or
(n = 3 and d = 4). In other words, he proved that the inclusion Σn,d ⊆ Pn,d is
strict except in these three cases. His proof is non-constructive, however. So
the following first example of a positive homogeneous polynomial that cannot
be written as a sum of squares was found only in 1967 by Motzkin [Motzkin]:
p(x, y, z) = x4y2 + x2y4 + z6 − 3x2y2z2 is nonnegative but cannot be given as
a sum of squares.

2.2.2

Multinomial notation and the inner product

Here we introduce the usual multinomial notation. Let i = (i1, . . . , in) ∈ Zn,
with all ij ≥ 0, and x = (x1, . . . , xn) ∈ Rn. We denote the mono-
mials in a contracted way as xi := ∏n

k=1 x
ik
k . The degree of the monomial

of index i is |i| := ∑n
k=1 ik. And the multinomial coefficients are given by

c(i) :=
(

|i|
i1,...,in

)
= |i|!

n∏
k=1

ik!
.

In the case of binary forms, where n = 2, we have the usual binomial coefficient
c(i) =

(
i1+i2

i1

)
. Let d ≥ 1, d ∈ Z, we denote I(n, d) := {i ∈ Zn

+ | |i| = d} the
set of indices of fixed degree d. We may specify the cardinality of this set as
N(n, d) := |I(n, d)| =

(
n+d−1

n−1

)
. A homogeneous polynomial in n variables and

of degree d, p(x1, . . . , xn) ∈ Fn,d is presented as:

p(x1, . . . , xn) =
∑

i∈I(n,d)
c(i) a(p ; i)xi, where a(p ; i) ∈ R.

If α = (α1, . . . , αn) ∈ Rn, we may define a homogeneous polynomial (α •)d by:

(α •)d(x) := (α • x)d =
( n∑

j=1
αj xj

)d

=
n∑

j=1
c(i)αi xi.

We introduce an inner product in Fn,d given by:

[ p , q ] :=
∑

c(i) a(p ; i) a(q ; i).
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We can identify p ∈ Fn,d with
(
c(i)1/2a(p ; i)

)
i∈I(n,d)

∈ RN(n,d) to obtain an
isomorphism between these two vector spaces, so that each coordinate contains
the information about one of the polynomial’s coefficients. Notice that the
inner product above is then the Euclidean inner product in RN(n,d) with this
identification. It is symmetric and it may be used to obtain any coefficient
of p, as for any i ∈ I(n, d) we have that [p, xi] = a(p; i). Moreover, a direct
computation gives us another useful result: Let p ∈ Fn,d and α ∈ Rn, then

[ p , (α •)d ] =
∑

c(i) a(p ; i)αi = p(α).

Thus, the inner product of any polynomial p with another of the form (α •)d

just consists of evaluating p at α.

2.2.3

First properties of blenders

In this section, we show that if the degree d is odd, then there are only trivial
blenders, while if d is even, thenQn,d is the smallest non-trivial blender and Pn,d

is the largest non-trivial blender. To achieve this, we need some propositions,
as Reznick presents in his article [Reznick]. Let us denote the closed orbit of
p ∈ Fn,d by [[p]] := {p ◦ M | M ∈ M(n;R)}. If p = q ◦ M for an invertible
matrix M ∈ GL(n;R), we write p ∼ q.

Proposition 2.2.1.

i. If p ∈ Fn,d and d is odd, then p ∼ λp,∀λ ∈ R∗.

ii. If p ∈ Fn,d and d is even, then p ∼ λp,∀λ ∈ R∗
+.

iii. If u, α ∈ Rn, then ∀p ∈ Fn,d, there exists a singular matrix M ∈ Mn(R)
such that p ◦M = p(u)(α •)d.

Proof. The first two statements are obtained by employing a multiple
of the identity matrix. For the third one, take the matrix M given by
Mij = uiαj , 1 ≤ i, j ≤ n. Then:

M(x) =
u1

n∑
j=1

αjxj , . . . , un

n∑
j=1

αjxj

 = (α • x) . (u1, . . . , un)

p ◦M(x) = (α • x)d . p(u1, . . . , un)
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The intersection, the Minkowski sum and the product set of two blenders
are also blenders, so given two blenders B1 and B2, the sets B1 ∩ B2,
B1 +B2 := {p1 + p2 : pi ∈ Bi} and B1 ∗B2 := {∑s

k=1 p1,kp2,k : pi,k ∈ Bi, s ∈ N}
are also blenders. The set Bn,d of all blenders in Fn,d does not form a chain, that
is, it may be the case that for B1, B2 ∈ Bn,d we have B1 ⊈ B2 and B2 ⊈ B1.
Reznick’s paper presents an example for (n, d) = (2, 8).

Proposition 2.2.2. Let S ⊂ Rn be a set with non-empty interior. Then Fn,d is
generated as a vector space by {(α •)d | α ∈ S}.

Proof. Let U be the subspace of Fn,d generated by {(α •)d | α ∈ S} and
consider q ∈ U⊥. This means that q(α) = [ q , (α •)d ] = 0, ∀α ∈ S. Since q is
a polynomial that vanishes on an open set, then q ≡ 0. Therefore, U⊥ = {0}
and U = (U⊥)⊥ = {0}⊥ = Fn,d.

Proposition 2.2.3. Suppose B is a blender and that there are p, q ∈ B and
u, v ∈ Rn such that p(u) > 0 > q(v). Then B = Fn,d.

Proof. Proposition 2.2.1 implies that, ∀α ∈ Rn, p(u)(α •)d and q(v)(α •)d are
in B. Therefore, proposition 2.2.2 gives us that Fn,d ⊆ B, because with the
positive value p(u) and the negative value q(v), we have in B the subspace
spanned by {(α •)d | α ∈ Rn}, which is the whole Fn,d.

Proposition 2.2.4. If there exists a non-trivial blender B ⊆ Fn,d, then d = 2r
is even, and for an appropriate choice of sign, Qn,d ⊆ ±B ⊆ Pn,d.

Proof. If B ̸= {0}, there exists p ∈ B and u ∈ Rn such that p(u) ̸= 0. If d is
odd, then p(−u) = −p(u) and due to proposition 2.2.3, we have that B = Fn,d.
If d is even, by taking −B if necessary, we may assume that p(u) > 0. Therefore,
if B ̸= Fn,d, then ±B ⊆ Pn,d. Finally, since the finite sum of elements of a
blender is also an element of the same blender, item iii of proposition 2.2.1
implies that Qn,d ⊆ ±B.
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2.2.4

The dual cone

The inner product of Fn,d allows us to define the dual cone of a set in the
following manner.

Definition (Dual cone). Let A be a subset of Fn,d. We define its dual cone as:

A∗ := {y ∈ Fn,d | [x , y] ≥ 0, ∀x ∈ A}.

This name is well justified because, as a direct consequence of this definition,
A∗ is always a closed convex cone, and we have that A ⊆ (A∗)∗.

Proposition 2.2.5. Let A ⊆ Fn,d be an arbitrary subset. Then (A∗)∗ is the
closure of the smallest convex cone that contains A.

Proof. Let Ã denote the closure of the smallest convex cone that contains A.
Since the dual cone is always closed and convex and A ⊆ (A∗)∗, we have that
Ã ⊆ (A∗)∗. It remains to prove that if z /∈ Ã, then z /∈ (A∗)∗. In order to do
so, one just need to apply the Hyperplane Separation Theorem (a geometric
form of the Hahn-Banach theorem). Since Ã is a closed convex set, and {z}
is a compact convex set, then there exists a hyperplane that strictly separates
them. In other words, there exist v ∈ Fn,d and c ∈ R such that:

∀x ∈ Ã, [ x , v ] > c and [ z , v ] < c.

As Ã contains the origin, then c < 0. Next, we show that ∀x ∈ Ã, [ x , v ] ≥ 0.
Suppose, for the sake of contradiction, that there exists an x ∈ Ã such
that [ x , v ] = −ε < 0. Since Ã is a cone, then λx ∈ Ã, ∀λ ≥ 0. We
have that [ λx , v ] = −λε. By taking a large enough λ, say λ ≥ −c/ε, we
have that −λε ≤ c and thus the contradiction [ λx , v ] ≤ c. Finally, since
∀x ∈ Ã, [ x , v ] ≥ 0, we have by definition that v ∈ A∗. Since [ z , v ] < c < 0,
we conclude that z /∈ (A∗)∗.

As a corollary, if C is already a closed convex cone, then C = (C∗)∗. In this
case, one may say that the cones C and C∗ are duals. Reznick also proves that
the dual of a blender is also a blender. This is a consequence of the following
proposition.
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Proposition 2.2.6. For every p, q ∈ Fn,d and M ∈ M(n;R), it holds that
[ p ◦M , q ] = [ p , q ◦MT ].

Proof. By proposition 2.2.2, it suffices to show that the equality is true for
linear forms raised to the d-th power. We have that:

[ p ◦M , q ] = [ (αM •)d , (β •)d ] = (αMβT)d

= (α(βMT)T)d = [ (α•)d , (βMT •)d ] = [ p , q ◦MT ].

Definition (Extremal point). Let C be a closed convex cone. We say that
u ∈ C is an extremal point of C if u = v1 + v2, with vi ∈ C implies that
vi = λiu, λi ≥ 0.

In other words, u cannot be written as a sum of two elements of C that are
not multiples. We use E(C) to denote the set of extremal points of C, which
consists of a set of half-lines originating from the origin. The set of extremal
points is important because it provides the essential elements to reconstruct
our cone C. A proof of the following proposition can be found in Rockafellar’s
book on convex analysis [Rockafellar].

Proposition 2.2.7. Let C be a closed convex cone and suppose that it does not
contain any line. Then C coincides with the convex hull of E(C).

Moreover, E(C) is the minimal set with this property, because if we remove
any half-line from it, its elements cannot be obtained as a convex combination
of the other points in C. Notice also that all the blenders that interest us
do not contain lines due to Proposition 2.2.3. Points in the interior of the
cone may easily be written as a convex combination of other elements in their
neighbourhood, so E(C) is contained in the boundary of the cone. Fortunately,
the inner product gives us a practical way to distinguish whether a point is in
the interior or on the boundary of C.

Proposition 2.2.8. Let C be a closed convex cone. Then u ∈ Co if and only
if ∀v ∈ C∗ \ {0}, [ u , v ] > 0. Equivalently, u ∈ ∂C if and only if there exists
v ∈ C∗ \ {0}, such that [ u , v ] = 0.

Proof. Take u ∈ C such that for a given v ∈ C∗ \ {0}, it holds that
[ u , v ] = 0. Then [ u − εv , v ] = −ε[ v , v ] < 0, so u − εv /∈ C for all
ε > 0, hence u /∈ Co. Conversely, if [ u , v ] > 0 for all v ∈ C∗ \ {0}, then
[ u ,w ] ≥ δ > 0 on the compact set {w ∈ C∗ : ||w|| = 1}. Then, by
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linearity, [ u , v ] ≥ δ||v|| for all v ∈ C∗. Therefore, if we take any element
z close enough to u, where ||u − z|| < δ, then for any v ∈ C∗ we have
[ z , v ] = [ u , v ] − [ u− z , v ] ≥ δ||v|| − ||u− z||.||v|| ≥ 0, so z ∈ (C∗)∗ = C and
thus u ∈ Co.

Proposition 2.2.9. Pn,2r and Qn,2r are dual blenders.

Proof. We have that p ∈ Q∗
n,2r if and only if for any s ∈ N, λ1, . . . , λs ≥ 0 and

α1, . . . , αs ∈ Rn,

0 ≤
[
p ,

s∑
k=1

λk(αk •)2r

]
=

s∑
k=1

λkp(αk).

This is true if and only if p(α) ≥ 0 for all α ∈ Rn, which is equivalent to
p ∈ Pn,2r.

2.2.5

Convex forms Kn,2r

A blender we have not yet presented is the one of convex homogeneous
polynomials Kn,2r.

Kn,2r :=
{
p ∈ Fn,2r : p : Rn → R is a convex function

}
.

We may define what a convex form p(x1, . . . , xn) is in two equivalent ways:

i. The homogeneous polynomial p is convex if ∀u, v ∈ Rn and λ ∈ [0, 1],
then p(λu+ (1 − λ)v) ≤ λp(u) + (1 − λ)p(v).

ii. Take u, v ∈ Rn, we define the Hessian of p in u evaluated at
v as: Hes(p ;u, v) := ∑n

i=1
∑n

j=1
∂2p(u)
∂xi∂xj

vivj. The form p is convex if
∀u, v ∈ Rn,Hes(p ;u, v) ≥ 0.

Notice that Hes(p ;u, u) = 2r(2r − 1)p(u), and therefore every convex form is
automatically nonnegative, that is, Kn,2r ⊆ Pn,2r (as we have seen, this is a
necessary property to be a blender 2.2.3).

The properties of being nonnegative and being a sum of squares are preserved
by the processes of homogenization and dehomogenization, but this is no
longer true for convexity. For example, t4 + 12t2 + 1 is convex, but its
homogenized form p(x, y) = x4 +12x2y2 +y4 has for its Hessian the expression
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Hes(p; (1, 1), (v1, v2)) = 36v2
1 + 96v1v2 + 36v2

2, which attains negative values as
Hes(p; (1, 1), (1,−1)) = 36 − 96 + 36 = −24, thus p(x, y) is not convex.

Let us now focus only on the case of two variables. Our goal is to show that for
low degrees, the blender of convex forms coincides with the smallest blender,
that of sums of maximal powers of linear forms. This holds only for the degrees
2r = 2 and 2r = 4.

Binary quadratic forms

We will show that P2,2 = Q2,2, and therefore all blenders are the same set. To
verify this, it is enough to factor the forms. Consider p(x, y) ∈ F2,2. Being a
homogeneous polynomial, p vanishes on lines through the origin. We need to
distinguish between the cases of real and complex roots.

If p has a real root, it vanishes on a line l : ax + by = 0. In this case, we
can factor p(x, y) by a power of this linear form (ax + by). If we assume that
p(x, y) ∈ P2,2, its roots must be of even multiplicity, and since p is of degree 2,
then p(x, y) = λ(ax+ by)2, λ ≥ 0. Therefore, p(x, y) ∈ Q2,2 (Note that in this
case p is an extremal point).

If p, a polynomial with real coefficients, vanishes on a complex line
l : x− (a+ ib)y = 0, it necessarily also vanishes on the conjugate line
l : x− (a− ib)y = 0. Thus, we may factor p as:

(x−(a+ib)y)(x−(a−ib)y) =
(
(x−ay)+iby

)(
(x−ay)−iby

)
= (x−ay)2+b2y2.

Therefore p(x, y) ∈ Q2,2 (Note that in this case p is not an extremal point).

We conclude that P2,2 = Q2,2 and hence all blenders coincide. In fact, this set
is the circular cone whose extremal set consists of forms with double roots and
is described by the equation ∆ = 0, where ∆ is the discriminant.

Binary quartic forms

In F2,4, the blenders Q2,4 and P2,4 are already distinct. Knowing that
Q2,4 = (P2,4)∗, our strategy will be to show that every convex form belongs
to (P2,4)∗.

In general, the extremal elements of P2,2r are forms with only double
roots (which may eventually coincide resulting in roots of higher multi-
plicities of even order). In other words, these forms can be written as
p(x, y) =

(
g(x, y)

)2
, g ∈ F2,r where all roots of g are real. To be convinced

of this, take p(x, y) = λ
∏r

j=1(ajx+ bjy)2, a form of this nature. If we write
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p = p1 + p2, pi ∈ P2,2r, then both pi must have the same roots as p and there-
fore we can factor them: pi(x, y) = λi

∏r
j=1(ajx+ bjy)2. Since we have already

reached the degree 2r, we have that both pi are multiples of p and therefore it
is extremal.

On the other hand, if p is not of this form, then it presents at
least one pair of conjugate complex roots and we can factor it as fol-
lows: p(x, y) =

(
x− (a+ ib)y

)(
x− (a− ib)y

)
g(x, y), g ∈ P2,2r−2. With this,

we have p(x, y) =
(
(x− ay)2 + b2y2

)
g(x, y) = (x− ay)2g(x, y) + b2y2g(x, y).

Thus, we can write p as the sum of two positive polynomials that
are not its multiples, p1(x, y) = (x− ay)2g(x, y) and p2(x, y) = b2y2g(x, y),
hence p is not extremal. So in the case of degree 4, we have that
p ∈ E(P2,4) ⇐⇒ p(x, y) = [(ax+ by)(cx+ dy)]2.

A polynomial q belongs to (P2,4)∗ if and only if ∀p ∈ P2,4 [ q , p ] ≥ 0.
By linearity, it is enough to show this inequality for extremal elements.
Additionally, since ∀M ∈ M(n;R), [ q ◦ M , p ] = [ q , p ◦ MT ], we may use
the action of SL(2;R) in our analysis. Let p0(x, y) = x2y2, we can always find
a matrix Ap ∈ SL(2;R) such that p = p0 ◦AT

p . Thus, the calculation becomes:

[ q , p ] = [ q , p0 ◦ AT
p ] = [ q ◦ Ap , p0 ].

But taking the inner product with the polynomial p0 consists of
evaluating the coefficient of q ◦ Ap accompanying x2y2. Therefore,
q ∈ (P2,4)∗ ⇐⇒ ∀p ∈ P2,4, a

(
q ◦ Ap; (2, 2)

)
≥ 0.

Assuming q ∈ K2,4, we have that for an arbitrary p, the polynomial
q ◦ Ap(x, y) = ax4 + 4bx3y + 6cx2y2 + 4dxy3 + ey4 is convex. If we evaluate its
Hessian at (u, v) =

(
(0, 1), (1, 0)

)
we obtain:

Hes
(
q ◦ Ap ; (0, 1), (1, 0)

)
=
(
1 0

)12c 12d
12d 12e

1
0

 = 12c ≥ 0.

The idea is that if we consider the dehomogenized polynomial
(evaluating it on the line y = 1), we have a one-variable polynomial
q ◦ Ap(x) = ax4 + 4bx3 + 6cx2 + 4dx+ e. Since (q ◦ Ap)′′(0) = 12c, it is convex
at this point if and only if c ≥ 0. This corresponds to evaluating the Hessian
of q ◦ Ap(x, y) at the point u = (0, 1) and in the direction of v = (1, 0).
The hypothesis that q ◦ Ap(x, y) is convex is stronger, as it indicates that
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∀u, v ∈ R2, Hes(q ◦ Ap ;u, v) ≥ 0, so we have the desired result, after all
a
(
q ◦ Ap; (2, 2)

)
= c ≥ 0.

We have thus proven that K2,2 = Q2,2 and K2,4 = Q2,4. To show that we no
longer have this identity when we increase the degree, let us explore other
important families of blenders.

2.2.6

The Waring blenders

The Waring blenders are a natural generalization of Qn,2r and Σn,2r. We define
them as follows: whenever r may be factored as r = uv, u, v ∈ N, then we
have the blender

Wn, (u,2v) :=
{
p ∈ Fn,2r : p =

s∑
k=1

h2v
k , hk ∈ Fn,u

}
.

One may confirm that this family includes the two blenders previously men-
tioned, as Qn,2r = Wn, (1,2r) and Σn,2r = Wn, (r,2). We may generalize even
further, obtaining the so-called generalized Waring blenders. These are defined
as follows: if r = ∑m

i=1 uivi, then we have the blender

Wn, {(u1,2v1),...,(um,2vm)} :=
{
p ∈ Fn,2r : p =

s∑
k=1

h2v1
k,1 . . . h

2vm
k,m , hk,i ∈ Fn,ui

}
.

Proposition 2.2.10. If ∑ vi = r, then W2,{(1,2v1),...,(1,2vm)} = P2,2r if and only if
m = r and vi = 1.

Proof. First, let us show that any p ∈ P2,2r = Σ2,2r can be given as a sum of
just two squares, that is, p = f 2

1 + f 2
2 , where fi ∈ F2,r. Since p is a binary and

nonnegative, by applying the Fundamental Theorem of Algebra we find that p
vanishes on real lines with an even multiplicity or on pairs of complex conjugate
lines, thus it splits as: p(x, y) = ∏

j(ajx+bjy)2∏
k(αkx−βky)(αkx−βky), with

aj, bj ∈ R and αj, βj ∈ C. The first product of squares can be written as
g(x, y)2, while the second, being a product of conjugate pairs, can be given as
(h1(x, y) + ih2(x, y))(h1(x, y) − ih2(x, y)) = h1(x, y)2 +h2(x, y)2. Therefore, we
have that p(x, y) = (gh1)2 + (gh2)2 = f 2

1 + f 2
2 .
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We may also factor fi as a product of linear terms and positive definite
quadratic terms, which in turn are themselves sums of squares.

fi =
∏
j

l1,j

∏
k

(l22,k + l23,k).

Consequently, we may write f 2
i in a way that shows that it belongs to

W2,{(1,2),...,(1,2)}.

f 2
i =

∏
j

l21,j

∏
k

(l22,k+l23,k)2 =
∏
j

l21,j

∏
k

(
(l22,k − l23,k)2 + (2l2,kl3,k)2

)
∈ W2,{(1,2),...,(1,2)}.

The other inclusion, W2,{(1,2),...,(1,2)} ⊆ P2,2r, is provided by proposition 2.2.3,
which states that all blenders are contained in P2,2r.

Now suppose that m < r and that the following element of P2,2r may be
obtained as an element of W2,{(1,2v1),...,(1,2vm)}.

r∏
l=1

(x− ly)2 =
s∑

k=1
h2v1

k,1 . . . h
2vm
k,m , hk,i(x, y) = ak,ix+ bk,iy ∈ F2,1.

Then for each k, we have

r∏
l=1

(x− ly)

∣∣∣∣∣∣
m∏

i=1
(ak,ix+ bk,iy).

But since m < r, the right-hand side has a lower degree, so it could only be
identically 0, which is a contradiction.

These blenders are useful to us, because Kn,2r and Wn, {(1,2r−2),(1,2)} are dual
blenders, as we will show later. In order to do so, we introduce certain
differential operators.

Definition. For i ∈ I(n, d), i = (i1, . . . , in), we define the differential operator:

Di :=
n∏

k=1

( ∂

∂xk

)ik
.

We also define for f ∈ Fn,d the following operator:

f(D) :=
∑

i∈I(n,d)
c(i) a(f ; i)Di.
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Properties:.

i. By the commutativity of the differentials:
∀i ∈ I(n, d),∀j ∈ I(n, d′), DiDj = Di+j = DjDi.

ii. By a straightforward calculation, we get:
∀f ∈ Fn,d,∀g ∈ Fn,d′ , (fg)(D) = f(D)g(D) = g(D)f(D).

iii. If i, j ∈ I(n, d) and i ̸= j, then
Di(xj) = 0 and Di(xi) = ∏n

k=1(ik)! = d!/c(i).

The following propositions relate the differential operator with the inner
product of Fn,d.

Proposition 2.2.11. If p, q ∈ Fn,d, then p(D)(q) = d![ p , q ] = q(D)(p).

Proof. The symmetry of the expression p(D)(q) is a consequence of the sym-
metry of the inner product, so we just have to show that p(D)(q) = d![ p , q ].

p(D)(q) =
∑

i∈I(n,d)

c(i) a(p ; i)Di

 ∑
j∈I(n,d)

c(j) a(q ; j)xj


=

∑
i∈I(n,d)

∑
j∈I(n,d)

c(i) c(j) a(p ; i) a(q ; j)Di(xj)

=
∑

i∈I(n,d)
c(i)2 a(p ; i) a(q ; i)Di(xi)

=
∑

i∈I(n,d)
c(i) a(p ; i) a(q ; i) d! = d![ p , q ].

Proposition 2.2.12. Let f, gh ∈ Fn,d, with g ∈ Fn,d−k and h ∈ Fn,k. Then
d![ f , gh ] = (d− k)![ g , h(D)(f) ].

Proof. Notice that both g and h(D)(f) are forms of degree d−k, so that their
inner product is well defined. The proof is then a simple calculation; it suffices
to use the previous proposition twice and the second property listed above:

d![ f , gh ] = gh(D)(f) =
(
g(D)h(D)

)
(f)

= g(D)
(
h(D)(f)

)
= (d− k)![ g , h(D)(f) ].
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Now, with the help of this differential operator language, we can prove that it
is possible to write the Hessian in terms of the inner product.

Lemma 2.2.13. Given p ∈ Fn,2r and u, v ∈ Rn, we have that:

Hes(p ;u, v) = 2r (2r − 1) [ p , (u •)(2r−2) (v •)2 ].

Proof. Simply write the expression for the Hessian using the
differential operator notation to be able to use its proper-
ties. By definition, Hes(p ;u, v) = ∑n

i=1
∑n

j=1
∂2p(u)
∂xi∂xj

vivj. If we write
f = (v •)2 = (v1x1 + · · · + vnxn)2, then f(D) = ∑n

i=1
∑n

j=1 vivj
∂2

∂xi∂xj
. Thus,

f(D)(p) = ∑n
i=1

∑n
j=1 vivj

∂2p
∂xi∂xj

∈ Fn,2r−2. We know that in general,
∀p ∈ Fn,2r,∀u ∈ Rn [ p , (u •)d ] = p(u), hence:

[ f(D)(p) , (u •)(2r−2) ] =
n∑

i=1

n∑
j=1

vivj
∂2p(u)
∂xi∂xj

= Hes(p ;u, v).

And by the preceding proposition, we obtain:

[ f(D)(p) , (u •)(2r−2) ] = 2r!
(2r − 2)! [ p , (u •)(2r−2) f ] = 2r (2r−1) [ p , (u •)(2r−2) (v •)2 ].

Theorem 2.2.14. Kn,2r and Wn, {(1,2r−2),(1,2)} are dual blenders.

Proof. Let p ∈ Fn,2r and u, v ∈ Rn. By the lemma above, we have that
Hes(p ;u, v) = 2r (2r − 1) [ p , (u •)(2r−2) (v •)2 ]. We may see that Kn,2r and
Wn, {(1,2r−2),(1,2)} are dual blenders, since:

Hes(p ;u, v) ≥ 0 ⇐⇒ [ p , (u •)(2r−2) (v •)2 ] ≥ 0,∀u, v ∈ Rn

⇐⇒ p ∈ (Wn, {(1,2r−2),(1,2)})∗.

Notice that this result provides another way to prove that K2,4 = Q2,4.
The elements of W2, {(1,2),(1,2)} are presented as sums of products of squares:
p = ∑s

k=1 h
2
k,1 h

2
k,2 , hk,i ∈ F2,1. However, we have seen that the extremal

points of P2,4 are exactly of the form p(x, y) = (ax + by)2(cx + dy)2, so
P2,4 = W2, {(1,2),(1,2)}. Therefore, Q2,4 = (P2,4)∗ = (W2, {(1,2),(1,2)})∗ = K2,4.
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Moreover, we can show that the equality no longer hold for higher degrees,
since for 2r ≥ 6, we have that W2, {(1,2r−2),(1,2)} ⊊ P2,2r, and thus
(P2,2r)∗ ⊊ (W2, {(1,2r−2),(1,2)})∗ ⇐⇒ Q2,2r ⊊ K2,2r.

2.2.7

Blenders of binary quartics

Recall that Bn,d denotes the set of all blenders of Fn,d. We will show that B2,4

is a 1-parameter family of nested blenders increasing from Q2,4 to P2,4. Let us
first take care of some particular quartics, those p ∈ P2,4 that are not strictly
positive and are also not a fourth power of a linear form. Let Z2,4 denote the
set of such quartics. If p ∈ Z2,4, then p = l2h, where l is linear and h is a
nonnegative quadratic form that is not a multiple of l.

Lemma 2.2.15. If B ∈ B2,4 and there is a nontrivial p ∈ B ∩ Z2,4, then
B = P2,4.

Proof. We have that p ∼ q, where q(x, y) = x2(ax2 + 2bxy + cy2) ∈ B, with
ac− b2 ≥ 0 and c > 0. We may rewrite q to obtain:

x2(ax2 + 2bxy + cy2) = x2

(ac− b2

c

)
x2 + c

(
b

c
x+ y

)2
 ∼ x2(dx2 + cy2),

with d ≥ 0. Now taking (x, y) 7→ (εx, ε−1y), we have ε4dx4 + cx2y2 ∈ B, so
by taking ε to zero, in the limit we get that x2y2 ∈ B and thus l21l22 ∈ B.
Therefore, we have shown that W2,{(1,2),(1,2)} ⊆ B, but W2,{(1,2),(1,2)} = P2,4 by
proposition 2.2.10, which concludes the proof.

Notice the importance of using GL(2;R) in the proof above. If we used a
compact group, such as SO(2;R), we would not have the same result. It would
not be possible to obtain fourth powers of linear forms nor the square of an
indefinite quadratic form. Let us now define a particular quartic that will be
very important in the study of this section.

fλ(x, y) := x4 + 6λx2y2 + y4.

We also define another quartic in the same class.

gλ(x, y) := fλ(x+ y, x− y) := (2 + 6λ)x4 + (12 − 12λ)x2y2 + (2 + 6λ)y4.
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We will employ two rational functions that we define below:

Θ(z) := 1 − z

1 + 3z , Υ(z) := 1 + 3z
3 − 3z .

Notice that gλ = (2 + 6λ)fΘ(λ), and so if λ ̸= −1
3 , then fλ ∼ fΘ(λ).

The function Θ is an involution, so for every z ∈ R, Θ(Θ(z)) = z. Furthermore,
Θ(0) = 1, Θ(1/3) = 1/3 and Θ(−1/3) = ∞. This last identity is related to
the equivalence (x2 − y2)2 ∼ x2y2. In addition, Θ is a decreasing bijection
between [1/3,∞) and (−1/3, 1/3]. Υ is also an involution, Υ(0) = −1/3, Υ is
a decreasing bijection from [−1/3, 0] to itself.

One may observe that fλ is nonnegative if and only if λ ∈ [−1/3,∞),
and it is strictly positive when λ ∈ (−1/3,∞). If B ∈ B2,4, then
fλ ∈ B ⇐⇒ fΘ(λ) ∈ B.

Since every blender is convex by definition, if −1/3 < λ ≤ 1/3, then
fλ ∈ B =⇒ fµ ∈ B for µ ∈ [λ,Θ(λ)].

It is a classical result that a ‘generic’ binary quartic can be put in the form
of fλ for some λ with an invertible linear change of variables. However, the
coefficients of this transformation may not be real, and the result is not
universal; for example, x4 ≁ fλ.

Proposition 2.2.16. If p ∈ P2,4 is strictly positive, then p ∼ fλ for some
λ ∈ (−1/3, 1/3].

Proof. If p = g2, then g is a quadratic form with no real root, hence we may
take g ∼ x2 + y2 and p ∼ f1/3.

On the other hand, if p is not the square of a quadratic form, then it
is the product of two distinct definite quadratic forms, thus we may write
p(x, y) = (x2 + y2)q(x, y), with q(x, y) = ax2 + 2bxy + cy2.

A rotation preserves x2+y2 and sends q to dx2+ey2, with d, e > 0, d ̸= e, hence
p ∼ (x2+y2)(dx2+ey2). Now the transformation (x, y) 7→ (d−1/4x, e−1/4y) gives
us p ∼ fµ, where µ = 1

6(γ + γ−1) > 1
3 for γ =

√
d/e ̸= 1. Therefore we finally

have p ∼ fΘ(µ) where Θ(µ) ∈ (−1/3, 1/3).
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2.2.8

Invariants of binary quartics

Suppose that p(x, y) = ∑4
k=0

(
4
k

)
ak(p)x4−kyk. Here we present the two

fundamental invariants of p, simplifying the notation for clarity:

S(p) := a0a4 − 4a1a3 + 3a2
2,

T (p) := a0a2a4 + 2a1a2a3 − a2
1a4 − a0a

2
3 − a3

2.

The invariant T (p) is the determinant of the catalecticant matrix (or Hankel
matrix) of p.

T (p) =

∣∣∣∣∣∣∣∣∣
a0 a1 a2

a1 a2 a3

a2 a3 a4

∣∣∣∣∣∣∣∣∣ .

By applying a change of variables q(x, y) = p(ax+ by, cx+ dy), the invariants
behave in the following manner:

S(q) = (ad− bc)4S(p), T (q) = (ad− bc)6T (p).

We may then define a new invariant K(p) := T (p)
S(p)3/2 , that is an absolute

invariant, which means that if p ∼ q then K(p) = K(q). The aforementioned
invariants of the quartic fλ in normal form are: S(fλ) = 1+3λ2, T (fλ) = λ−λ3

and K(fλ) = λ−λ3

(1+3λ2)3/2 . Let us define the function ϕ(λ) := λ−λ3

(1+3λ2)3/2 for later
use.

Proposition 2.2.17. If p is strictly positive, then p ∼ fλ, where λ is the
only solution in (−1/3, 1/3] of the equation K(p) = ϕ(λ). If p ∈ Z2,4, then
K(p) = ϕ(−1/3).

Proof. One just has to verify that ϕ is strictly increasing in this interval, as its
first derivative is positive in the interval (−1/3, 1/3).

We have seen that if p ∈ Z2,4, then p ∼ q, where q(x, y) = ax4 + 6cx2y2,
with c > 0. In this case, S(q) = 3c2 and T (q) = −c3. Therefore
K(p) = K(q) = −3−3/2 = ϕ(−1/3).
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ϕ(λ)=
λ - λ3

1 + 3 λ23

Figure 2.2: The graph of ϕ(λ), strictly increasing in the interval [−1/3, 1/3].

Given a blender B ∈ B2,4, we define the set ∆(B) := {λ ∈ R : fλ ∈ B} of
values of λ ∈ R such that the form fλ belongs to B. Next we show that ∆ is
always a particular type of interval.

Proposition 2.2.18. If B ∈ B2,4 is a nontrivial blender, then ∆(B) = [τ,Θ(τ)]
for some τ ∈ [−1/3, 0].

Proof. Firstly we point out that the set ∆(B) must be an interval because B
is a convex set, and it must be a closed interval because B is a closed set.

For the blender P2,4, we have that ∆(P2,4) = [−1/3,+∞), since
fλ = x4 + 6λx2y2 + y4 ≥ (x2 − y2)2 for all values of x and y if and only if
λ ≥ −1/3. On the other hand, if λ < −1/3, then fλ(1, 1) < 0, and thus
fλ /∈ P2,4.

For the blender Q2,4, we have that ∆(Q2,4) = [0, 1]. One way to prove this is
by using the fact that Q2,4 = K2,4, and checking that fλ is convex if and only
if λ ∈ [0, 1].

Finally, for any other blender B, let τ = inf{λ : fλ ∈ B}. Since
Q2,4 ⊊ B ⊊ P2,4, then we know that τ ∈ (−1/3, 0). As B is a closed set,
we know that fτ ∈ B, and since fτ ∼ fΘ(τ), then fΘ(τ) ∈ B. Therefore
[τ,Θ(τ)] ⊆ ∆(B). If λ < τ then fλ /∈ B by definition of τ . And if λ > Θ(τ)
and fλ ∈ B, then we would have that fΘ(λ) ∈ B, but Θ(λ) < Θ(Θ(τ)) = τ ,
which is a contradiction.

We conclude with a full characterization of the nontrivial blenders of F2,4. Let
us first define a set comprised of the closed orbits of quartics in the normal
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form. Given a τ ∈ [−1/3, 0] we define

Bτ :=
⋃

τ≤λ≤1/3
[[fλ]] = {p : p ∼ fλ, τ ≤ λ ≤ 1/3} ∪ {(αx+ βy)4 : α, β ∈ R}.

Then it is true that if B ∈ B2,4 is a nontrivial blender, then B = Bτ for some
τ ∈ [−1/3, 0] and B∗

τ = BΥ(τ). The proof of this theorem may be found, once
again, in Reznick’s paper [Reznick]. In summary, the nontrivial blenders of
binary quartics form a 1-parameter family of nested convex cones Bτ , ranging
from B0 = Q2,4 to B−1/3 = P2,4.

2.3

Cross-ratio of the roots of a positive convex quartic

In this section, we change our perspective in order to understand the positive
quartics from the point of view of the relation of its four roots. We prove that
any positive binary quartic p(x, y) whose set of roots is {z1, z1, z2, z2} with z1

and z2 in the upper half-plane of C is convex if and only if the cross-ratio of
its roots given by (z1, z2; z2, z1) belongs to the interval [1, 2].

2.3.1

Positive binary quartics and their roots

Let p(x, y) : R2 → R be a positive binary quartic. This means that it is a
homogeneous polynomial in two real variables, x and y, of degree 4, with real
coefficients such that for every (x, y) ̸= 0, the image p(x, y) > 0.

Proposition 2.3.1. Let p(x, y) be a positive binary quartic such that the
coefficient of x4 is not 0. Then it can be factored as

p(x, y) = k(x− z1y)(x− z2y)(x− z3y)(x− z4y)

where k ∈ R>0 , and zj ∈ C correspond to the roots of the dehomogeneized
polynomial p(x, 1) ∈ R[x].

Proof. By the fundamental theorem of algebra, we may decompose

p(x, 1) = k(x− z1)(x− z2)(x− z3)(x− z4)

and then by the process of homogeneization we recover the factored form of
the original polynomial p(x, y).
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The condition that the coefficient of x4 be not 0 will soon be dropped when we
move our domain to the projective setting. Also, we will get rid of the number
k when we consider the action of GL (2;R) on R[x, y], since it will always be
possible to set k = 1, as we shall explain in the section 2.3.3.

The four roots zj of p(x, 1) determine completely their polynomial (up to a
scalar multiple), so they must contain all information about p(x, y). Notice that
in the case we are considering, all roots zj are not real and come in conjugate
pairs, since p(x, y) is real and positive. It is then advantageous to change our
mindset and shift to the complex plane by considering p(x, y) : C2 → C, so
that we can suitably work with the roots, which we denote by z1, z1, z2, z2.

The zero set of p(x, y) is actually a cone due to its homogeneity, that is, if
p(x0, y0) = 0 , then for all λ ∈ C, p(λx0, λy0) = 0. This fact allows us to
think about the zeros of p(x, y) as elements of CP1 instead of C2. Indeed, by
definition, the whole fibre of [x0 : y0] is comprised of zeros of the polynomial
and we may call the well-defined fraction z0 := x0/y0 ∈ C ⊔ {∞} a root of
p(x, y).

Conversely, for the roots zj ∈ C, as presented in Proposition 2.3.1, we have
corresponding sets (λzj, λ) ⊂ C2 of zeros. One can now naturally see how the
assumption that the coefficient of x4 be not 0 is artificial. This term vanishes
if and only if one of the roots of p(x, y) is ∞, in other words, p(1, 0) = 0. If one
wishes to factor the polynomial in this case, for each factor where zj = ∞ one
should change the term (x − zjy) by y. For instance, if a single root is equal
to ∞ we have

p(x, y) = k(x− z1y)(x− z2y)(x− z3y)y.

Nevertheless, this never happens in our subject, since we assume that p(x, y)
is positive, hence p(1, 0) ̸= 0.

2.3.2

Cross-ratio of the roots

Given an ordered list of four complex numbers (w1, w2, w3, w4), one defines the
cross-ratio

(w1, w2;w3, w4) := (w1 − w3)(w2 − w4)
(w1 − w4)(w2 − w3)

∈ C ⊔ {∞}.

This value is not invariant with respect to the permutation of its arguments.
Indeed, if we name λ := (w1, w2;w3, w4), then the 24 permutations give rise to
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6 possibly distinct values for the cross-ratio:

λ,
1
λ
, 1 − λ,

1
1 − λ

,
λ− 1
λ

,
λ

λ− 1 .

For the purpose of analysing the properties of the polynomial p(x, y), we
shall compute the cross-ratio of its roots. Although they do not have any
natural ordering, we do have the opportunity to list them in a particular
fashion that will prevent any ambiguity about their cross-ratio. Consider
H := {z ∈ C | Im(z) > 0}, the upper half-plane of C. We may name the roots
so that z1 and z2 belong to H. In this case, let z1 = a+ ib and z2 = c+ id with
a, b, c, d ∈ R and b, d > 0. Then the cross-ratio (z1, z2; z2, z1) is a real number
given by

(z1, z2; z2, z1) = (a− c)2 + (b+ d)2

4bd ∈ R.

Notice that this value is preserved if we interchange a ↔ c and b ↔ d due
to the symmetry of the expression above. This means that it does not matter
which root on H is denoted by z1 and which is denoted by z2, so the cross-ratio
(z1, z2; z2, z1) of the roots of p(x, y) is well defined.

With the cross-ratio of the roots of a quartic well defined, we may state the
main theorem of this paper.

Theorem 2.3.2. Let p(x, y) be a positive binary quartic whose set of roots
is {z1, z1, z2, z2}, with z1, z2 ∈ H. Then p(x, y) is convex if and only if the
cross-ratio of the roots (z1, z2; z2, z1) belongs to the interval [1, 2].

The proof of theorem 2.3.2 will be provided in section 2.3.5.

Remark. The fact that the cross-ratio of the roots of a positive quartic is a
real number is no coincidence. Indeed the cross-ratio is real if and only if the
four points lie on a circle or line [Sarason], which is always the case for a pair
of conjugate pairs.

2.3.3

Actions of linear groups on polynomials and its roots

We now consider the action of different linear groups on the set of positive
binary quartics and on their roots, starting with the action of GL (2;R) given
by linear change of variables. This means that for an element A ∈ GL (2;R),
the polynomial p(x, y) is mapped to A · p(x, y) := p(X, Y ), where
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X
Y

 = A

x
y


More explicitly, let us write it in terms of the coefficients of A.

A =
α β

γ δ

 X = αx+ βy

Y = γx+ δy

A · p(x, y) = p(αx+ βy, γx+ δy)

By considering p(x, y) in its factored form, one can see how this action affects
the roots. Each factor undergoes the following transformation:

x− zjy 7→ X − zjY

= αx+ βy − zj(γx+ δy)

= (α− zjγ)x+ (β − zjδ)y

= (α− zjγ)
(
x+ β − zjδ

α− zjγ
y

)

= (α− zjγ)
(
x− δzj − β

−γzj + α
y

)

Therefore, the whole polynomial A · p(x, y) is

A ·p(x, y) = k
4∏

j=1
(α− zjγ)

(
x− δzj − β

−γzj + α
y

)
= p(α, γ)

4∏
j=1

(
x− δzj − β

−γzj + α
y

)
.

There are two facts that one may derive from this expression. Firstly, as stated
in section 2.3.1, we can get rid of the real coefficient k in the definition of p(x, y)
by picking a suitable A ∈ GL (2;R) such that p(α, γ) = 1. Secondly, one can
see that this action induces another action of GL (2;R), but on C ⊔ {∞} by
applying a Möbius transformation on the roots. Notice, however, that if one
applies the action of A on p(x, y), then it is the Möbius transformation given
by its inverse A−1 that acts on the roots.

The full group of Möbius transformations is actually PGL (2;C). Since our goal
is to determine under which conditions on the roots a positive binary quartic
is convex, we may consider theses polynomials up to positive real multiples. A
polynomial p(x, y) is positive and convex if and only if kp(x, y) is positive and
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convex for any k > 0. The action of PGL(2;R) is then well defined on the set
of such classes of polynomials and also on C ⊔ {∞}, where the roots belong.

However, PGL(2;R) is still too big for our need. This group has 2 isomorphic
connected components, one given by classes of matrices with positive
determinant and the other given by those with negative determinant. The
connected component of the identity is called PSL (2;R), and as a subgroup
of PGL (2;C), it comprises Möbius transformations that preserve the upper
half-plane H.

Let us consider how these groups act on the roots of p(x, y). If an element
A ∈ PGL(2;R) maps a root z ∈ C to w ∈ C, then it must map its conjugate
pair z to w, because all its coefficients are real. Since the ordering of the roots
is irrelevant to the polynomial they define, it is enough to consider the action
of PSL (2;R), which keeps z1 and z2 in H.

Another crucial property for our investigation is the fact that any Möbius
transformation A ∈ PGL (2;C) preserves the cross-ratio [Sarason]. That is,
given 4 points w1, w2, w3, w4 ∈ C ⊔ {∞} it holds that

(w1, w2;w3, w4) = (A · w1, A · w2;A · w3, A · w4) .

2.3.4

Locus of the roots in H under PSL (2;R)

In this section we study the transitivity of PSL (2;R) on H in order to
understand what freedom we have with respect to the positioning of the roots
of a positive quartic under such action. Our main goal is to prove the following
lemma.

Lemma 2.3.3. Let p(x, y) be a positive binary quartic with distinct roots
{z1, z2, z2, z1} such that z1, z2 ∈ H and with cross-ratio (z1, z2; z2, z1) = λ.
Then there exists a Möbius transformation in PSL (2;R) whose action maps
p(x, y) to a positive binary quartic with roots

w1 = i, w2 =
(

2λ− 1 − 2
√
λ (λ− 1)

)
i,

w1 = −i, w2 = −
(

2λ− 1 − 2
√
λ (λ− 1)

)
i.

Firstly, the well-known Fundamental Theorem of Möbius Geometry states
that the action of PGL (2;C) on H is sharply 3-transitive [Sarason]. This
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means that given two triples (z1, z2, z3) and (w1, w2, w3) of distinct elements in
C ⊔ {∞}, there exists an unique Möbius transformation A ∈ PGL (2;C) such
that A · zj = wj for j ∈ {1, 2, 3}.

However, that is not the case for PSL (2;R). By dimension counting, one would
expect that PSL (2;R) cannot even act 2-transitively on H, because this would
require 4 degrees of freedom, while PSL (2;R) is a 3-dimensional Lie group.
This action is 1-transitive, so one can map the first root to the point i. But
what can we say about the new position of the other root in H? Because the
cross-ratio is preserved by all Möbius transformations, one may use it to find
out that the other root must lie on a particular circle, as we now show in detail.

Assume, as in section 2.3.2, that the four roots of the quartic p(x, y) are
z1 = a + ib, z1 = a − ib, z2 = c + id and z2 = c − id, with b, d > 0, so that
z1 and z2 belong to H. Let λ := (z1, z2; z2, z1) be the cross-ratio of these roots.
One may check that λ ≥ 1, since (a−c)2 +(b+d)2 ≥ 4bd and λ = (a−c)2+(b+d)2

4bd
.

We will treat the special case where λ = 1 separately, since it corresponds to
the case where p(x, y) has a pair of double roots.

By applying the action of a suitable Möbius transformation A ∈ PSL (2;R),
we map the four roots to:

A · z1 = i, A · z2 = x+ iy, A · z2 = x− iy, A · z1 = −i.

Using the preserved cross-ratio λ, one can find the implicit equation that
determines the possible values for the new coordinates x and y of the second
root.

λ = x2 + (y + 1)2

4y ⇔ x2 + (y + 1 − 2λ)2 = 4λ(λ− 1).

The equation above describes a circle of center (0, 2λ − 1) and radius
2
√
λ(λ− 1). Thus we have shown that the image of the second root under the

action of A lies on this particular circle. On top of that, we have the freedom
to place it anywhere on the circle thanks to the stabilizer of i in PSL (2;R),
denoted Stab(i). This subgroup happens to be the projective special orthogonal
group SO (2;R).

Stab(i) = SO (2;R) :=


cos(θ) − sin(θ)

sin(θ) cos(θ)

 ∈ PSL (2;R)

∣∣∣∣∣∣ θ ∈ R⧸πZ

 .

The SO (2;R) orbit of any point z ∈ H \ {i} is a circle whose center c ∈ H
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lies on the imaginary axis with Im(c) > 1, which must therefore coincide with
the circular locus available for the second root as previously described. Notice
that the SO (2;R) orbit of the point yi, for y > 0, contains the point i/y.
Consequently, we have the freedom to place the second root z2 on the open
segment between 0 and i, and we can express it explicitly in terms of the
cross-ratio:

A · z2 = x+ iy where x = 0 and y = 2λ− 1 − 2
√
λ (λ− 1) ∈ (0, 1) .

The above is precisely the statement of lemma 5.1 we wished to prove.

2.3.5

Normal form and convexity

In the previous sections we have proved that, up to the action of a suitable
Möbius transformation, one may assume that the four roots of a positive binary
quartic p(x, y) whose distinct roots yield a given cross-ratio λ ∈ (1,∞) are:

w1 = i, w2 =
(

2λ− 1 − 2
√
λ (λ− 1)

)
i,

w1 = −i, w2 = −
(

2λ− 1 − 2
√
λ (λ− 1)

)
i.

Since we know these roots explicitly, we are able to present the expression for
p(x, y):

p(x, y) =
(
x2 + y2

)(
x2 +

(
2λ− 1 − 2

√
λ (λ− 1)

)2
y2
)

= x4 +
((

2λ− 1 − 2
√
λ (λ− 1)

)2
+ 1

)
x2y2 +

(
2λ− 1 − 2

√
λ (λ− 1)

)2
y4.

Let us define Λ :=
(
2λ− 1 − 2

√
λ (λ− 1)

)2
in order to avoid having to write

down the whole expression many times. Now in a more concise notation, the
quartic p(x, y) is given by the normal form:

p(x, y) =
(
x2 + y2

) (
x2 + Λy2

)
= x4 + (Λ + 1)x2y2 + Λy4.

Considering Λ as a function of λ, and recalling that λ ∈ (1,∞), one can verify
that Λ(λ) is a strictly decreasing function whose image is the interval (0, 1).
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We are finally in a suitable setting to study the convexity of the quartic.
It is convex if and only if its Hessian is positive semi-definite [Krantz]. A
straightforward calculation yields

H(x, y) =
12x2 + 2 (Λ + 1) y2 4 (Λ + 1)xy

4 (Λ + 1)xy 12Λy2 + 2 (Λ + 1) x2

 .

Lemma 2.3.4. The Hessian H(x, y) of the quartic in normal form
(x2 + y2) (x2 + Λy2) is positive semi-definite if and only if Λ ∈ [17 − 12

√
2, 1].

Proof. A symmetric matrix is positive semi-definite if and only if all its
principal minors are nonnegative [Prussing]. In our case, this amounts to
checking the coefficients H1,1(x, y), H2,2(x, y) and the determinant of H(x, y).
Since Λ is a square, it is always nonnegative, which implies that H1,1(x, y) and
H2,2(x, y) are both nonnegative as well. For the determinant, we have

det (H(x, y)) = 24 (Λ + 1) x4 +
(
144Λ − 12 (Λ + 1)2

)
x2y2 + 24Λ (Λ + 1) y4.

We need to find for which values of Λ this determinant is nonnegative. Since
its expression is a biquadratic polynomial in x and y, that is, a quadratic
polynomial in x2 and y2, let us change variables by taking X = x2 and Y = y2.

det (H(X, Y )) = 24 (Λ + 1)X2 +
(
144Λ − 12 (Λ + 1)2

)
XY + 24Λ (Λ + 1)Y 2.

Next, as det (H(X, 0)) = 24 (Λ + 1)X2 > 0 for all X ̸= 0, we may
dehomogenize it by setting Y = 1 in order to obtain a univariate polynomial.
Let us denote by ∆(Λ) the discriminant of det (H(X, 1)). If ∆(Λ) ≤ 0, then the
determinant is always nonnegative, because its leading coefficient 24 (Λ + 1) is
positive for all values of Λ. On the other hand, if ∆(Λ) > 0, then det (H(X, 1))
has a pair of real roots, thus if at least one of them is positive, then there are
values of x ∈ R such that det (H(x, 1)) < 0. We are going to show that this is
exactly what happens; whenever ∆(Λ) > 0, there are indeed positive roots for
det (H(X, 1)).

The discriminant of det (H(X, 1)) is:

∆(Λ) = 144
(
1 − 36Λ + 70Λ2 − 36Λ3 + Λ4

)
.

The special case related to multiple roots of p(x, y) gives λ = Λ = 1. One can
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verify that this value of Λ yields a double root of the discriminant above. So
one may divide it by (Λ − 1)2 to find the remaining roots.

∆(Λ)
(Λ − 1)2 = 144 (1 − 36Λ + 70Λ2 − 36Λ3 + Λ4)

(Λ − 1)2 = 144
(
1 − 34Λ + Λ2

)
.

The resulting quadratic polynomial has for its roots 17−12
√

2 and 17+12
√

2,
the latter not belonging to (0, 1), the domain of Λ. Therefore, if Λ ≥ 17−12

√
2,

then ∆(Λ) ≤ 0, whereas if Λ < 17 − 12
√

2, then ∆(Λ) > 0. In the case of
positive discriminant, one may check that both roots of the determinant are
positive by studying the signs of its coefficients. While the leading and the
constant coefficients are always positive, the linear coefficient is negative for
Λ ∈ (0, 17 − 12

√
2). This implies that both roots have the same sign and must

be positive. Therefore, det (H(x, y)) is nonnegative for every (x, y) ∈ R2 if and
only if Λ ∈ [17 − 12

√
2, 1].

Proof of Theorem 2.3.2. Using Lemma 2.3.4 we have found the condition for
the Hessian H(x, y) to be positive semi-definite, which in turn is equivalent to
p(x, y) being convex. However, it was expressed in terms of Λ, while it would be
more natural to present it in terms of the cross-ratio λ. Since Λ(λ) is a strictly
decreasing function, there is a unique value of λ for which Λ(λ) = 17 − 12

√
2,

and it is λ = 2.

2, 17 - 12 2 

1.0 1.5 2.0 2.5
λ0.0

0.2

0.4

0.6

0.8

1.0

Λ(λ)

Figure 2.3: The graph of Λ(λ).

In conclusion, we have proved that any positive binary quartic p(x, y) whose set
of roots is {z1, z1, z2, z2} with z1, z2 ∈ H is convex if and only if the cross-ratio
of the roots (z1, z2; z2, z1) belongs to the interval [1, 2]. The critical cases, which
correspond to the boundary of this interval, also yield convex quartics, because
the limit of convex functions is also convex.



3

Convexly nested Conics

In this chapter, we introduce the main tool we use to analyse the projective
relative position of a pair of nondegenerate conics in the real projective plane.
It consists of a equivalence class of binary quartics produced by injecting a
quadratic parametrization of the first conic into the implicit equation of the
second conic.

3.1

Quadratic parametrization of a conic

Let (t : w) ∈ RP1 be a projective parameter. We say that a smooth map
(x0(t : w) : x1(t : w) : x2(t : w)) : RP1 → RP2 is a projective parametrization
of a curve on RP2. A polynomial parametrization is one such parametrization
where all xi are polynomial in (t, w). For this map to be well-defined, the
polynomials xi must be homogeneous, because of the projective parameter and
all of the same degree, because of the underlying projective plane. They must
also never vanish simultaneously, since (0 : 0 : 0) is not allowed in RP2. When
they are all of degree 2, we say that (x0 : x1 : x2) is a quadratic parametrization
of the curve.

Lemma 3.1.1. Any irreducible conic in RP2 admits a 3-dimensional family
of quadratic parametrizations, all related via linear change of parameters.

Proof. The heart of the proof is that, on the one hand, the space of all quadratic
parametrization is isomorphic to an open set of RP8, since any such map is
given by the 9 coefficients of the quadratic polynomials, and any non-zero
multiple of (x0, x1, x2) gives the same curve in RP2.

x0(t, w) = a0t
2 + 2a1tw + a2w

2;

x1(t, w) = a3t
2 + 2a4tw + a5w

2;

x2(t, w) = a6t
2 + 2a7tw + a8w

2.
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On the other hand, the condition that such a map parametrizes a conic is
given by 5 quadratic equations on these coefficients, so in the end there is a
3-dimensional space left of possible quadratic parametrizations of the conic.

In addition, the action of an element of PGL(2;R) by linear change of
coordinates maps a quadratic parametrization into another, since the degrees
are preserved. However, the curve on RP2 that both such parametrizations
describe is the same, because they nullify the same implicit equation. We shall
make good use of this 3-dimensional Lie group to generate the 3-dimensional
space of quadratic parametrizations of a conic.

A projective parametrization of a conic u is a triple xi ∈ F2,2, i ∈ {0, 1, 2}
such that, for every point (x : y : z) on the conic, there exists (t : w) ∈ RP1

with (x0(t : w) : x1(t : w) : x2(t : w)) = (x : y : z), and such that for every
(t : w) ∈ RP1, the point (x0(t : w) : x1(t : w) : x2(t : w)) lies on the conic u.
Therefore, u(x0, x1, x2) must be identically zero.

Without loss of generality, we may assume that the irreducible conic is given
by u = x2 +y2 −z2, by taking the action of a suitable element A of PGL(3;R).
Once we find all quadratic parametrizations of this conic u, we just have to
apply the action of A−1 to get all quadratic parametrizations of the original
conic.

Any quadratic parametrization (x0 : x1 : x2) of u satisfies x2
0 + x2

1 − x2
2 = 0

for all values of (t : w) ∈ RP1. One may then see that x2 must be a positive
definite quadratic form, since if there existed (t0 : w0) such that x2(t0, w0) = 0,
then we would also have that x0(t0, w0) = x1(t0, w0) = 0, which is not allowed.
Since x2 is positive definite, there is an element of PGL(2;R) that transforms
x2(t, w) into x2(T,W ) = T 2 + W 2 by Sylvester’s Law of Inertia. Notice that
this step uses only 2 degrees of freedom available via the action of PGL(2;R),
since the stabilizer of T 2 +W 2 is still a 1-dimensional subgroup whose elements
are:

Rθ =
cos(θ) − sin(θ)

sin(θ) cos(θ)

 .
Indeed, what we have accomplished is that a7 = 0 and a6 = a8, which also
indicates that only 2 degrees of freedom were necessary. So, after applying this
linear change of coordinates, we have six real coefficients bi that determine the
parametrization. Here we keep the lower case for simplicity.
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x0(t, w) = b1t
2 + 2b2tw + b3w

2;

x1(t, w) = b4t
2 + 2b5tw + b6w

2;

x2(t, w) = t2 + w2.

Next, by taking the suitable Rθ one may also set b2 = 0. The action of Rθ on
x0 plays as follows:

 cos(θ) sin(θ)
− sin(θ) cos(θ)

b1 b2

b2 b3

cos(θ) − sin(θ)
sin(θ) cos(θ)

 =

=
 b1 cos2(θ) + 2b2 cos(θ) sin(θ) + b3 sin2(θ) (b3 − b1) cos(θ) sin(θ) + b2(cos2(θ) − sin2(θ))

(b3 − b1) cos(θ) sin(θ) + b2(cos2(θ) − sin2(θ)) b1 sin2(θ) − 2b2 cos(θ) sin(θ) + b3 cos2(θ)



=
b1 cos2(θ) + 2b2 cos(θ) sin(θ) + b3 sin2(θ) b3−b1

2 sin(2θ) + b2 cos(2θ)
b3−b1

2 sin(2θ) + b2 cos(2θ) b1 sin2(θ) − 2b2 cos(θ) sin(θ) + b3 cos2(θ)

 .

Thus, the coefficient of tw in Rθ . x0(t, w) is (b3−b1) sin(2θ)+2b2 cos(2θ), which
vanishes for a value of θ that satisfies tan(2θ) = 2b2

b1−b3
. If b1 = b3, it suffices to

take θ = π/4. Hence, by using the last degree of freedom available, we have
five real coefficients ci such that:

x0(t, w) = c1t
2 + c2w

2;

x1(t, w) = c3t
2 + 2c4tw + c5w

2;

x2(t, w) = t2 + w2.

Now, let us inject xi into the equation of u and collect each monomial.

u(x0, x1, x2) = (c1t
2 + c2w

2)2 + (c3t
2 + 2c4tw + c5w

2)2 − (t2 + w2)2

= (c2
1 + c2

3 − 1)t4 + 4c3c4t
3w + 2(c1c2 + 2c2

4 + c3c5 − 1)t2w2

+ 4c4c5tw
3 + (c2

2 + c2
5 − 1)w4.

In order for (x0 : x1 : x2) to be a parametrization of u, the quartic above must
be identically zero, so we have the following system of equations:
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

c2
1 + c2

3 = 1

c3c4 = 0

c1c2 + 2c2
4 + c3c5 = 1

c4c5 = 0

c2
2 + c2

5 = 1

If c4 = 0, then there is no viable solution, as the system reduces to:


c2

1 + c2
3 = 1

c1c2 + c3c5 = 1

c2
2 + c2

5 = 1

Multiply the second equation by −2 and add all three equations to get:

(c1 − c2)2 + (c3 − c5)2 = 0.

So c1 = c2 = λ, c3 = c5 = µ and λ2 +µ2 = 1. Then the quadratic parametriza-
tion for the conic would be (λ(t2 + w2) : µ(t2 + w2) : (t2 + w2)) = (λ : µ : 1),
which is a single point on RP2. Therefore, we do not get any suitable
parametrization with c4 = 0.

We consider the case were c4 ̸= 0 then. Immediately, we have that c3 = c5 = 0
and the system reduces to:


c2

1 = 1

c1c2 + 2c2
4 = 1

c2
2 = 1

We find that c1 and c2 could each be either 1 or −1. However, the second
equation imposes that they must have opposite signs, because otherwise
c3 = c4 = c5 = 0, hence x1(t, w) = 0 for all (t, w) ∈ RP1 and we do not have
a suitable parametrization of the conic. Therefore, we have found 4 possible
solutions for the system:
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Solution 1 Solution 2 Solution 3 Solution 4

t2 − w2 t2 − w2 −t2 + w2 −t2 + w2

2tw −2tw 2tw −2tw

t2 + w2 t2 + w2 t2 + w2 t2 + w2

Nevertheless, they are all related by linear change of variables, since from the
first solution we obtain the second by making t → −t, w → w; the third with
t → w, w → t; and the fourth with t → −w, w → t. In conclusion, given
any irreducible conic, in RP2, it has a unique quadratic parametrization up to
linear change of parameters. Consequently, the conic admits a 3-dimensional
family of quadratic parametrizations and they are all related via the PGL(2;R)
action, belonging to a single orbit.

3.2

Quartics that describe the relative position of two conics

Let u and v be a pair of conics, where u is non-degenerate. We have seen in Sec-
tion 3.1 that u admits a unique quadratic parametrization up to the PGL(2;R)
action as linear changes of the projective parameter (t : w) ∈ RP1. Let
(x0(t : w) : x1(t : w) : x2(t : w)) be one such parametrization for u. By injecting
it into the implicit equation of v, one gets a binary quartic in t and w, which
we will call φ(u, v). If v is given by v = ax2 + by2 + cz2 + 2fxz + 2gyz + 2hxy,
then we may present φ(u, v) more concretely as:

φ(u, v) =
(
x0 x1 x2

)
a h f

h b g

f g c



x0

x1

x2

 .

φ(u, v) = ax2
0 + bx2

1 + cx2
2 + 2fx0x2 + 2gx1x2 + 2hx0x1.

Notice, however, that by taking two distinct quadratic parametrization for
u, we do not obtain the same quartic when injecting them into the implicit
equation of v. In fact, since these parametrizations must be related via an
element of PGL(2;R), we get two quartics in the same PGL(2;R) orbit. On
top of that, for any λ ∈ R∗, one could take λv as the implicit equation of the
second conic instead of v, which results in the quartic λφ(u, v) by linearity.
This gives us the opportunity to specify the signature of v. Since it must be
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a non-degenerate conic in RP2, it can only have signature (1, 2) or (2, 1). As
an arbitrary choice, let us only work with signature (1, 2). So, for example, we
will come across the particular conic c := −x2 − y2 + z2, whose zero set is the
unitary circle centered at the origin when considering the affine chart z = 1.

Every non-degenerate conic divides RP2 into two disjoint components, one
homeomorphic to a disc and the other homeomorphic to a Möbius band. In
order to distinguish the two, one may simply check any given point not on the
conic, because if the quadratic form has signature (1, 2), then every point in
the region isomorphic to the disc has a positive value as its image, while the
points in the other region have negative image.

The quartic φ(u, v) is the object that we are going to use to study the relative
position of u with respect to v, so let us define it rigorously. Since we may
consider any quadratic parametrization for u and also any positive multiple
λv for the second conic, (λ > 0 in order to preserve the signature of v) we
cannot be too rigid with the definition of φ(u, v). Instead of being a single
specific quartic, it should be a whole GL (2;R) equivalence class.

Definition. Let u and v be two non-degenerate conics of RP2. Let
ρ(u) = (x0(t : w) : x1(t : w) : x2(t : w)) be any quadratic parametrization of u
and let V be the symmetric matrix of signature (1, 2) associated to v. Then
φ(u, v) is the GL (2;R) orbit of the binary quartic given by ρ(u)TV ρ(u).

We had to broaden the definition of φ(u, v) in order to avoid any ambiguity
in its construction, but we may always treat it as a binary quartic by picking
an arbitrary representative of the class, as long as we work with its GL (2;R)
invariant properties. We are allowed, for example, to consider its roots.

Notice that any intersection of the two curves, u and v, must be related to
a root of the associated quartic. In fact, by Bézout’s theorem [Fulton] we
know that they must intersect in 4 points in CP2, taking into account the
multiplicity of the intersections, so even the non-real roots of φ(u, v) are related
to intersections of the conics, which just do not belong to RP2. We are, however,
only interested in the real projective plane, so that we may define what it means
for a conic to be nested inside another conic, a property that is invariant under
real projective transformations.

Definition. We say that u is nested with respect to v if the zero set of u is
contained in the component of the complement of v that is isomorphic to a
disc.

A direct characterization of this property is the sign of the image of φ(u, v).
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As we have explained above, u is nested with respect to v if and only if the
quartic φ(u, v)(t, w) is strictly positive for all values of (t : w) ∈ RP1.

Next, we highlight the fact that φ(·, ·) is invariant under the action of
PGL(3;R) as projective transformations on RP2. Indeed, if A ∈ PGL(3;R),
then A.(x0(t : w) : x1(t : w) : x2(t : w)) is a suitable quadratic parametrization
of A.u, and the implicit equation of A.v is obtained from V via congruence
with respect to A−1. Thus one has:

φ(A.u,A.v) =
(
x0 x1 x2

)
AT(A−1)T


a h f

h b g

f g c

A−1A


x0

x1

x2

 = φ(u, v).

The invariance of φ(·, ·) under PGL(3;R) establishes that the class of quartics
φ(u, v) gives us some projective information about the relative position of the
conics u and v.

It is also important to remark that, for a fixed first conic u, the class of quartics
obtained via φ(u, ·) is constant along pencils through u, with exception of u
itself, naturally. The class of φ(u, u) is the class of the identically 0 polynomial,
since the parametrization of u stays on the zero-level curve of u by definition.
Now, given a distinct second conic v ̸= u and any λ ∈ R, the class of φ(u, λu+v)
is the same as that of φ(u, v), because, by denoting the matrix forms of u and
v by U and V respectively, one has by linearity that:

φ(u, λu+ v) =
(
x0 x1 x2

)
(λU + V )


x0

x1

x2



=
(
x0 x1 x2

)
λU


x0

x1

x2

+
(
x0 x1 x2

)
V


x0

x1

x2

 .

φ(u, λu+ v) = λφ(u, u) + φ(u, v) = φ(u, v).

Notice, however, that λ should actually be restricted to a smaller domain,
because in the pencil λu+v there are conics of different signatures, as it always
has at least one degenerate element. Let us analyse one concrete example to
better understand what may happen.



Chapter 3. Convexly nested Conics 59

Consider u = −x2 −y2 +z2 and v = −2x2 −2y2 +z2. Using the parametrization
ρ(u) = (t2 −w2 : 2tw : t2 +w2) (which we explain shortly in the next section),
we have that φ(u, v) = −(t2 + w2)2. It stands to reason that φ(u, v) is always
negative, since in the affine chart z = 1 we see that u is the unit circle while
v is the circle of radius

√
2/2 centered at the origin, so u belongs to the

component homeomorphic to the Möbius band. Algebraically, φ(u, λu + v)
always results in this same exact quartic, as expected. However, if λ = −1,
then −u+v = −x2−y2 is a degenerate conic. The same happens for λ = −2, as
−2u+ v = −z2 is also degenerate. For λ > −1, the conic λu+ v has signature
(1, 2) and everything is fine. But if −2 < λ < −1, the signature becomes (0, 3)
and there is no point of the conic in RP2, and φ(u, λu+v) is not defined. Finally,
for λ < −2, the signature becomes (2, 1), thus by definition of φ, we must
consider −λu− v in the second term, and we get φ(u,−λu− v) = (t2 + w2)2.
Again, it makes sense that the quartics obtained are positive, since −λu − v

represent circles centered at the origin of radii greater than 1, so u belongs to
the component homeomorphic to the disc.

Figure 3.1: Conics of the pencil λu+ v color-coded.
Those in green have λ < −2. The ones in red have λ > −1. The conic u is in

blue and v is in purple.

One may remark that the choices we have made in the definition of φ(·, ·)
are arbitrary. That is indeed the case, although it is also a strategic one.
First we point out that it is not at all clear the relation between φ(u, v) and
φ(v, u), so the order in which we consider the conics is important. Moreover,
the proofs we present in Chapters 4, 5 and 6 rely on the analysis of the class of
quartics φ(u, v), namely its positivity, convexity and algebraic invariants. By
demanding that the second conic has signature (1, 2), these properties of the
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class of quartics are well suited to identify whether u is nested with respect to
v and other stricter relations that we define further on.

3.3

Anchoring the first conic

Since φ(·, ·) is invariant under the PGL(3;R) action by projective transforma-
tions, we may always take the non-degenerate conic u to c = −x2 − y2 + z2,
which is the unitary circle centered at the origin when considering the affine
chart z = 1. From now on, we will always consider c as the first conic in the
evaluation of φ, so we require one of its quadratic parametrizations. This can
be achieved by a classical construction, which we explain below.

First we fix a line at infinity so that we can work with just two coordinates.
Let us take the plane z = 1. We are going to obtain a quadratic rational
parametrization on two coordinates, which we then turn into a quadratic
parametrization by adding the third homogeneous coordinate and multiplying
by the common denominator as it still describes the same curve on the
projective plane.

Let us take the point (1 : 0 : 1) on c. Consider the pencil of lines passing
through that point and let it be linearly parametrized as a function of a
parameter t, for example as y = −t(x − 1). For each fixed value of t, we
can substitute the equation of its corresponding line in the equation of the
conic to find the second intersection between these two curves.

y = −t(x− 1)

−x2 − y2 + 1 = 0
=⇒ (−t2 − 1)x2 + 2t2x+ (−t2 + 1) = 0.

For each fixed value of t, we may find two values of x which are the roots of
the expression above. They correspond to the x coordinates of the intersections
between the line and the conic. As we know that x = 1 is necessarily one of
the solutions, we may factor it out and thus obtain a rational parametrization
of the x coordinate along the conic.

(−t2 − 1)x2 + 2t2x+ (−t2 + 1)
x− 1 = x(−t2 − 1) + (t2 − 1),

x(−t2 − 1) + (t2 − 1) = 0 =⇒ x(t) = t2 − 1
t2 + 1 .
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Now, we just have to go back to the equation of the line in order to obtain the
rational parametrization of the y coordinate. Since it is an affine equation,
we see that both coordinates have the same denominator in its rational
parametrization, as we wanted.

y = −t(x− 1) =⇒ y(t) = 2t
t2 + 1 .

To conclude, we quit this affine plane in order to obtain a quadratic
parametrization with a real parameter for our conic:

x(t) = t2 − 1, y(t) = 2t, z(t) = t2 + 1.

Notice that if we use a real parameter t ∈ R, we fail to consider a particular
line of the pencil. In the construction above, it is the tangent line to the conic,
of equation x = 1, which can be obtained as a limit object if we make t → ±∞.
We can easily avoid this issue if we use a projective parameter (t : w) ∈ RP1

instead. To do so, one just homogenizes the expressions obtained at the end.
Thus, we have found the following quadratic parametrization for c:

x(t, w) = t2 − w2 , y(t, w) = 2tw , z(t, w) = t2 + w2.

3.4

Isomorphism between pencils through c and P(F2,4)

Now that we have decided to always work with c as the first conic in the
evaluation of φ and that we have a quadratic parametrization for it, we move to
the study of the map φ(c, ·). It takes a nondegenerate conic and returns a class
of binary quartics up to the action of GL (2;R). In order to better understand
its behaviour, let us first arbitrarily pin down a representative of the class
by demanding that the quadratic parametrization used in the computation
is (t2 − w2 : 2tw : t2 + w2). This has the effect of removing the PGL(2;R)
identification on the image. Now, for an arbitrary conic v of signature (1, 2),
we may compute the binary quartic φ(c, v).

φ(c, v) =
(
t2 − w2 2tw t2 + w2

)
a h f

h b g

f g c



t2 − w2

2tw
t2 + w2

 .
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φ(c, v) = (a+ 2f + c)t4 + (4h+ 4g)t3w + (−2a+ 4b+ 2c)t2w2 + (−4h+ 4g)tw3 + (a− 2f + c)w4.

Abstractly, if we provisionally lift the restriction about the signature, we have
in our hands a linear map L : R6 → R5 given by

a

b

c

f

g

h


L7−→



a+ 2f + c

4g + 4h
−2a+ 4b+ 2c

4g − 4h
a− 2f + c


.

The kernel of this linear map is one dimensional and it is precisely the direction
related to the conic c, with generating vector a = −1, b = −1, c = 1, f = 0,
g = 0, h = 0. This implies that the map L is surjective, so every binary quartic
is attainable and corresponds to a single pencil of conics through c.

Let us use Fc to denote the space of pencils of conics containing c. Notice that
it is isomorphic to RP4. The projectivization of the space of binary quartics
is P(F2,4), which is also isomorphic to RP4. By passing to the quotient with
respect to its kernel, the map L establishes an isomorphism Fc

∼= P(F2,4).

The map L also allows us to solve the inverse problem. Given a bi-
nary quartic p(t, w) ∈ F2,4, one may find every conic v such that
φ(c, v) = p(t, w). Due to the kernel, one may first set the coefficient c = 0.
If p(t, w) = αt4 + βt3w + γt2w2 + δtw3 + εw4, then the remaining coefficients
of v must be:

a = α + ε

2 ; b = α + γ + ε

4 ; f = α− ε

4 ; g = β + δ

8 ; h = β − δ

8 .

Finally, by adding back any scalar multiple λc to v, which equates to adding
−λ to the coefficients a and b while adding λ to the coefficient c, one gets any
conic of the pencil containing c and v. To conclude, we check the signature of
the quadratic form associated to λc + v: If it is already (1, 2) we are done. If
it is (2, 1), we have to multiply by −1, because only φ(c,−λc − v) is defined
and it actually gives us the quartic −p(t, w). If it is any other signature, then
φ(c, λc + v) is not defined and this case does not belong to the scope of our
research.



4

Osculating Conics

The main goal of this chapter is to understand the relative position of two
osculating conics of a smooth curve in the real projective plane in order
to obtain a generalization of the Tait-Kneser theorem. It is already known
that under certain hypotheses such conics are disjoint. This result was first
published by Hayashi in 1926 [Hayashi]. Our approach will allow us to find a
new proof of this fact and also a stronger result, showing that the osculating
conics are in some sense “more than nested”, that is, there is an even stronger
condition on their relative position. We give it a new name by declaring that
they are convexly nested.

Definition. Given two nondegenerate conics u and v in RP2, we say that u is
convexly nested with respect to v if the binary quartic φ(u, v) ∈ K2,4 is positive
and convex.

With this definition at hand, we may now state one of the main theorems of
this thesis.

Theorem 4.0.1. Let γ : (−ε, ε) → RP2 be a smooth arc in the real projective
plane with no inflections or sextactic points. Then the osculating conics of γ
are disjoint and convexly nested.

A sextactic point is a point of the curve γ where the order of contact between
the curve and the osculating conic in higher than generically expected, that is,
of order 6 or higher. It is the equivalent of a vertex, which is the point where
the contact with the osculating circle is higher than expected, so 4 or higher.
The proof of the theorem is provided throughout the remainder of this chapter.

4.1

Osculating Conics

We shall begin by describing the space of conics of the real projective plane.
Every conic is described implicitly by an algebraic expression of the form:
ax2+by2+cz2+2fxz+2gyz+2hxy = 0, where x, y and z are the homogeneous
coordinates of RP2. This is a homogeneous polynomial of degree 2 in three
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variables, also called a ternary quadratic form. The set of all ternary quadratic
forms is a 6-dimensional vector space denoted F3,2.

However, although every non-null form gives rise to an algebraic curve on the
complex projective plane, not every form corresponds to a non-empty curve
in the real projective plane. For example, there are no points on RP2 whose
homogeneous coordinates satisfy the expression x2+y2+z2 = 0. Fortunately, it
is possible to characterize which quadratic forms are associated to non-empty
conics. One just has to study its associated symmetric matrix. Notice that the
generic ternary quadratic form ax2 + by2 + cz2 + 2fxz + 2gyz + 2hxy = 0 can
also be given by: (

x y z
)

a h f

h b g

f g c



x

y

z

 = 0.

The curve described by this equation is in fact the set of isotropic vectors of
the matrix above. Therefore the conic related to said matrix is present on RP2

if and only if it is not positive-definite or negative-definite. In fact, its signature
reveals every information we need. Up to the action of the projective group
PGL(3;R) we can classify the real projective conics and present their normal
forms.

Classification of real projective conics

Signature Normal form Type

(3, 0) or (0, 3) x2 + y2 + z2 = 0 Empty irreducible
(2, 1) or (1, 2) x2 + y2 − z2 = 0 Non-empty irreducible
(2, 0) or (0, 2) x2 + y2 = 0 Imaginary line-pair

(1, 1) x2 − y2 = 0 Real line-pair
(1, 0) or (0, 1) x2 = 0 Repeated line

The imaginary line-pair passes through a single point in RP2, so it does not
interest us either. Since we will be looking for generic osculating conics, which
are non-empty irreducible, we should only work on the open set of F3,2 of
the forms with signature (2, 1) or (1, 2). Notice, however, that since non-
zero multiples of an expression describe the same curve, this is actually a
fiber bundle over the true space of conics C, which could be obtained through
projectivization. Nevertheless, we are going to work directly on fiber bundles
of base C throughout this chapter.
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The total space we have in hand has two isomorphic connected components,
characterized by the signature of their elements. The intersection of each
fiber, which represents an unique conic, with one such connected component
is comprised of a half-line starting from the origin. Moreover, the involution
of multiplying the form by −1 swaps the two components of the fiber. Let us
take a deeper look at what characterizes each component.

Take for example the conic given implicitly by the expression
u(x, y, z) = −x2 − y2 + z2. If we look at the affine chart given by z = 1,
u manifests itself as the unit circle centred at (0 : 0 : 1). Any non-zero multiple
of this expression λu describes the same curve, but if λ is negative it changes
the signature of the quadratic form. One can observe this difference by check-
ing the sign of the values obtained in each component of the complement of
the conic in RP2.

An irreducible conic divides the projective plane into two components, one
homeomorphic to a disc and the other homeomorphic to a Möbius band. In
our example, u yields positive values on the disc (which we call from now on
the “inside” of the circle) and negative values on the Möbius band (which we
call the “outside” of the circle). In fact this is true for every quadratic form of
signature (1, 2), while the opposite holds for those of signature (2, 1). Our goal
is to study how the osculating conics evolve locally and since both connected
components of the total space comprise the same information, specifically,
both contain representative fibers for every irreducible conic, we may work
on a single component. So we only consider conics given implicitly by real
quadratic forms of signature (1, 2), and this space shall be denoted by Ω.

To summarize, we will consider the fiber bundle (Ω, C, π, F ) where the total
space Ω is the open set of F3,2 of ternary quadratic forms whose associated
matrix has signature (1, 2); the base space C is the set of non-degenerate conics
of RP2; the projection π : Ω → C is the map that sends each form to its zero
set; and each fiber F is a half-line, so isomorphic to R.

Working in this bundle will provide us with a degree of freedom that
will be useful to prove the main theorem. Our strategy is to consider the
curve Γ : (−ε , ε) → Ω defined by the osculating conics of a smooth arc
γ : (−ε , ε) → RP2. We are going to describe a particularly convenient way
to parametrize such curve Γ that allows us to establish the result.

As a main tool, we use the map φ defined in section 3.2. Given a pair of
conics, this map produces a homogeneous polynomial of degree 4 in two
variables, a binary quartic. The nature of this polynomial characterizes the
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relative position of the conics in RP2. We then use the concept of blenders
introduced in section 2.2 to classify the relation between the conics. Once a
suitable parametrization for Γ has been found, we evaluate φ

(
Γ(t1),Γ(t2)

)
and

show that it always belongs to K2,4 = Q2,4, showing that if there is no sextactic
point or inflection, then the smaller osculating conic is convexly nested with
respect to the bigger one, since the class of quartics that they generate is
positive and convex. The geometric meaning of this property will be discussed
in the next chapter.

4.2

Parametrizing the path of osculating conics

Consider a smooth arc γ : (−ε , ε) → RP2 with no inflexion point.
The osculating conic to this curve at an arbitrary point γ(s0) is the
only one that has a contact of order greater than or equal to 5 at
precisely this point. We wish to determine the conic’s implicit equation
u(x, y, z) = ax2 + by2 + cz2 + 2fxz + 2gyz + 2hxy, so we must obtain its 6 co-
efficients. Having a fifth order contact with the curve means that if we evaluate
u along γ(s), not only do we get a zero at s = s0, but the first four deriva-
tives also vanish on this point. Therefore, this property is represented by the
following system of equations:



u◦γ (s0) = 0

d
ds

(u◦γ)(s0) = 0

d2

ds2 (u◦γ)(s0) = 0

d3

ds3 (u◦γ)(s0) = 0

d4

ds4 (u◦γ)(s0) = 0

Notice that all of these equations are linear with respect to the coefficients
a, b, c, f, g, h that determine the conic. For a generic point of γ, we have
5 linearly independent equations which therefore provide us with a one-
dimensional vector subspace of solutions within F3,2. One such subspace
contains exactly one fiber of our bundle Ω, so this system of equations has
effectively a unique solution. In order to have a concrete equation assigned
to each osculating conic, we may introduce, without loss of generality, an
additional condition setting one of the coefficients to be identically equal
to 1, say c = 1. In this way, for every s0 ∈ (−ε , ε) we have an implicit
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equation Γ(s0) ∈ Ω for the osculating conic of γ at γ(s0), which gives us a
parametrization of a path of osculating conic in our bundle Ω.

However, we could have picked another representative for the osculating
conic at each point and still have the same information. If we consider any
smooth function with positive image λ : (−ε , ε) → R∗

+ and take the curve
λ(s)Γ(s) ⊂ Ω, then for every s0 we still have an equation of the osculating
conic at γ(s0). This step provides us with a degree of freedom of which we will
make good use.

Our goal is to show that φ
(
Γ(0),Γ(s0)

)
∈ K2,4 for an arbitrary s0 ∈ (0, ε). Our

strategy will be to consider the whole path φ
(
Γ(0),Γ(s)

)
, letting s vary from

0 to s0. We know that it starts at the origin of the space of quartics, and by
analysing the tangent vector d

ds
φ
(
Γ(0),Γ(s)

)
along this curve we can conclude

in which region its other extremity lies.

Notice that since the first term we provide to φ is constant, when we
differentiate with respect to s only the derivative of the second term, which
provides the implicit equation, is important. Indeed, composing with a fixed
function on the right is a linear operator, as (λf + g) ◦ h = λf ◦ h+ g ◦ h, for
any λ ∈ R and any functions f , g and h. Since φ

(
Γ(0),Γ(s)

)
= Γ(s)◦ρ

(
Γ(0)

)
,

then we have that d
ds
φ
(
Γ(0),Γ(s)

)
=
(

d
ds

Γ(s)
)

◦ ρ
(
Γ(0)

)
. Therefore, we may

benefit from studying the tangent vector d
ds

Γ(s) in order to understand how
the binary quartic of interest evolves.

4.2.1

The tangent vector d
ds

Γ(s)

Since Γ(s) ⊂ Ω ⊂ R6 is a curve in a vector space, its tangent vector can also be
interpreted as representing a conic. What can we know about said conic based
simply on geometric concepts? By definition, the curve Γ(s) consists of conics
that have at all times a contact of order at least 5 with γ. We claim that,
consequently, the tangent vector Γ′(s) necessarily represents a conic whose
contact with γ is of order at least 4 at the corresponding point. Note that this
property does not define it uniquely, in fact there is a one-dimensional pencil
of conics that satisfies this condition.

The proof of this geometric statement is an exercise of differential calculus.
In order to simplify the reading of the proof, let us adjust the notation. For a
given s ∈ (−ε , ε), Γ(s) is the implicit equation of a conic, so it can be evaluated
at any point of RP2. In order to determine the contact of this conic with a
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smooth curve γ at the point γ(r) we must consider the function Γ(s) ◦ γ(r),
which we denote F (s, r).

Lemma 4.2.1. If for every s ∈ (−ε , ε) the conic given implicitly by Γ(s) has
a contact of order at least 5 with the curve γ : (−ε , ε) → RP2 at the point
γ(s), then the conic given by d

ds
Γ(s) has a contact of order at least 4 with γ at

the point γ(s).

Proof. For a fixed s, having a contact of order n means that Γ(s) ◦ γ(r) as
a function of r has a root of order n at r = s. Then, a contact of order 5 is
expressed analytically by the following system of equations:



Γ(s)◦ γ(s) = 0

d
dr

(
Γ(s)◦γ

)
(s) = 0

d2

dr2 (Γ(s)◦γ)(s) = 0

d3

dr3 (Γ(s)◦γ)(s) = 0

d4

dr4 (Γ(s)◦γ)(s) = 0

↔



F (s,s) = 0

d
dr
F (s,s) = 0

d2

dr2F (s,s) = 0

d3

dr3F (s,s) = 0

d4

dr4F (s,s) = 0

The key point is that these equations hold for every s ∈ (−ε , ε), and so we can
differentiate them with respect to s. By doing it to an equation of the system
and then considering the next one of higher degree, we are able to show an
analogous expression for d

ds
Γ(s). Since we are able to carry this up to the fourth

iteration, we can show that d
ds

Γ(s) has a contact of order at least 4 with γ at
the point γ(s).

Given k ∈ N, we have that dk

drkF (s,s) = DkF(s,s).(er, . . . , er), where there are k
copies of er, the second vector of the standard basis. Now we take the derivative
of this term with respect to s.

d

ds

(
DkF(s,s).(er, . . . , er)

)
(s) = Dk+1F(s,s).(er + es, er, . . . , er)

= Dk+1F(s,s).(er, er, . . . , er) +Dk+1F(s,s).(es, er, . . . , er)

= dk+1

drk+1F (s,s) + dk

drk

(
d

ds
F (s, r)

)
(s,s).

If the equation dk

drkF (s,s) = 0 holds for all values of s, then its derivative
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presented above is also null. If in addition dk+1

drk+1F (s,s) = 0, then the last term
dk

drk

(
d
ds
F
)

(s,s) vanishes as well. Let us rewrite it in terms of Γ and γ to see
what it represents. Notice that the composition on the right by a fixed function
γ(r) is linear, hence d

ds
F (s, r) = d

ds

(
Γ(s) ◦ γ(r)

)
= d

ds
Γ(s) ◦ γ(r). Therefore,

the original system of equations for Γ implies a corresponding system for d
ds

Γ,
which concludes the proof.



Γ(s)◦ γ(s) = 0

d
dr

(
Γ(s)◦γ

)
(s) = 0

d2

dr2 (Γ(s)◦γ)(s) = 0

d3

dr3 (Γ(s)◦γ)(s) = 0

d4

dr4 (Γ(s)◦γ)(s) = 0

=⇒



d
ds

Γ(s)◦ γ(s) = 0

d
dr

(
d
ds

Γ(s)◦γ
)
(s) = 0

d2

dr2 ( d
ds

Γ(s)◦γ)(s) = 0

d3

dr3 ( d
ds

Γ(s)◦γ)(s) = 0

It is worth mentioning that there are no restrictions on the tangent space, so
the conic represented by the tangent vector d

ds
Γ(s) can be reducible, and in

fact it is beneficial to do so. A reducible conic is a pair of lines; if in addition
it has a contact of order at least 4 with a point of γ, which has no inflexions,
then there is only one option: it must be the double tangent line at γ(s).

It is at this point that we use the degree of freedom that we introduced earlier
with the function λ(s). As a reminder, we defined Γ(s) point by point as the
unique solution of a system of linear equations on the conic’s coefficients, where
one of such equations fixed the coefficient c = 1. At present, all we know is
that d

ds
Γ(s) represents a conic with a fourth order contact with γ at γ(s). If

we consider λ(s)Γ(s) instead, by taking its derivative we obtain:

d

ds
λ(s)Γ(s) = λ′(s)Γ(s) + λ(s)Γ′(s).

The expression above shows that, for a fixed s, d
ds
λ(s)Γ(s) is a linear combina-

tion of two conics Γ(s) and Γ′(s). This describes precisely the pencil of conics
with a contact of order at least 4 at γ(s), provided that Γ′(s) is not a multiple
of Γ(s). The next lemma states that this problem only happens at sextactic
points of the curve γ.
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Lemma 4.2.2. The conics given by Γ(s) and d
ds

Γ(s) are the same if and only
if γ(s) is a sextactic point.

Proof. As shown in the proof of lemma 4.2.1, since d4

dr4

(
Γ(s) ◦ γ

)
(s) = 0 holds

for every value of s, by taking the derivative of this expression we obtain the
following equation.

d5

dr5

(
Γ(s) ◦ γ

)
(s) + d4

dr4

(
d

ds
Γ(s) ◦ γ

)
(s) = 0.

Therefore, if one of the terms vanishes, so does the other. Suppose that for
a fixed s we have a sextactic point γ(s). By definition, the contact of the
osculating conic Γ(s) at this point is of a greater order than expected, so at
least 6. This means that d5

dr5

(
Γ(s) ◦ γ

)
(s) = 0. On the other hand, since the

osculating conic at a given point is unique, the conic given by Γ(s) and d
ds

Γ(s)
are the same if and only if d

ds
Γ(s) is itself the osculating conic and hence

d4

dr4

(
d
ds

Γ(s) ◦ γ
)
(s) = 0. Consequently, those two properties are equivalent,

which concludes the proof.

The lemma above provides us with the key element of the hypothesis of
our main theorem. In order to follow the next steps, we are going to sup-
pose that there are no sextactic points on the smooth arc γ. Under this
condition, we may find a function λ(s) such that for every s the conic
d
ds
λ(s)Γ(s) is the double tangent line. To do so, we must solve a differ-

ential equation. Consider a conic described by the usual implicit equation
u = ax2 + by2 + cz2 + 2fxz + 2gyz + 2hxy. As stated in section 4.1, it is re-
ducible if and only if the determinant of its corresponding matrix vanishes.

∆(u) =

∣∣∣∣∣∣∣∣∣
a h f

h b g

f g c

∣∣∣∣∣∣∣∣∣ .

The differential equation at hand is then ∆
(
λ′(s)Γ(s) + λ(s)Γ′(s)

)
= 0. It has

a unique solution if we add the initial condition λ(0) = 1. Therefore, we have
a curve of osculating conics Γ̃(s) = λ(s)Γ(s) ⊂ Ω parametrized in such a way
that its tangent vector d

ds
Γ̃(s) always corresponds to the the double tangent

line at γ(s).
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4.3

Osculating conics are disjoint and nested

In the last section we have achieved the desired parametrization for the path
of osculating conics, which will be simply denoted by Γ(s). Now we come
back to the path on the space of quartics given by φ

(
Γ(0),Γ(s)

)
. We want to

understand the nature of its tangent vector, which is given by

d

ds
φ
(
Γ(0),Γ(s)

)
= d

ds
Γ(s) ◦ ρ

(
Γ(0)

)
.

In order to understand the quartic that it represents, we must insert the
polynomial parametrization of the initial conic ρ

(
Γ(0)

)
into the implicit

equation of the double tangent line to the other conic Γ(s) at its point of
contact with the original arc. In other words, the fundamental question is:
does the osculating conic Γ(0) intersect the tangent line to γ in γ(s) at a point
in RP2?

Figure 4.1: The tangent lines after the point of contact do not intersect the
osculating conic at real points.

Let us start by analysing the tangent vector at the origin of the space of
quartics d

ds
φ
(
Γ(0),Γ(s)

)∣∣∣
s=0

. Since we are evaluating the derivative at s = 0,
the referred line is tangent to the starting conic Γ(0) and therefore the
resulting quartic has a fourth root, say [t : w] = [α : β] ∈ RP1. Thus, it
is necessarily nonnegative or nonpositive. Geometrically, this indicates that in
a neighbourhood of s = 0, outside the point of contact γ(0), the conic Γ(0)
is either contained in the interior of Γ(s) or in the exterior of Γ(s). So up to
changing the direction in which we traverse γ, we can assume that the resulting
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quartic is nonnegative. This means that the tangent vector is at the boundary
of the Q2,4 blender.

d

ds
φ
(
Γ(0),Γ(s)

)∣∣∣
s=0

= (βt− αw)4 ∈ ∂Q2,4.

This is relevant because it allows us to write the first term of the Taylor series
of the curve φ

(
Γ(0),Γ(s)

)
.

φ
(
Γ(0),Γ(s)

)
= (βt− αw)4 s+O(s2).

Now consider any point on the initial conic Γ(0) given by the coordinates
[t0 : w0]. To find out whether this point belongs to another osculating conic,
just evaluate φ

(
Γ(0),Γ(s)

)
[t0 : w0]. If this point is not the point of contact

with γ, that is, if [t0 : w0] ̸= [α : β], then for a sufficiently small s > 0 we can
see that φ

(
Γ(0),Γ(s)

)
[t0 : w0] > 0 and therefore there is no intersection at this

point.

In order to find out what happens at the point of contact, given by
[t0 : w0] = [α : β], we need to consult some derivatives of higher order. Here
we may apply once again the core idea of lemma 4.2.1 to figure out this infor-
mation. Assuming we are not on a sextactic point, the first derivative d

ds
Γ(s)

always represents a conic with a contact of order 4 with the arc γ. Conse-
quently, the second derivative will be a conic with a contact of order 3, and so
on. Since the conic Γ(0) has a contact of order 5 with γ, we see that the contact
between it and the second derivative d2

ds2 Γ(s) is of order 3 there too. In this
way, we can write some more terms of the Taylor expansion of φ

(
Γ(0),Γ(s)

)
.

(βt− αw)4 s+ (βt− αw)3 p1(t, w) s
2

2 + (βt− αw)2 p2(t, w) s
3

6

+ (βt− αw) p3(t, w) s
4

24 + p4(t, w) s5

120 +O(s6).

Where pn(t, w) are homogeneous polynomials of degree n and [t0 : w0] = [α : β]
is not a root of any of them. So, when we evaluate at this point, we get:

φ
(
Γ(0),Γ(s)

)
[α : β] = p4(α, β) s

5

120 +O(s6).
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Since p4(α, β) ̸= 0, in fact it must be positive by continuity, then for small
values of s > 0 there is no intersection between Γ(0) and Γ(s) at the referred
point. We have therefore proved that the osculating conics of a smooth arc on
the real projective plane without sextactic points are locally disjoint. Moreover,
since they evolve continuously, the only way that there can be no intersection
is if they are nested. As this is a transitive property, we can extend it until we
pass through a sextactic point.

We have thus provided a new proof for the already known result that the
osculating conics are disjoint and nested. Next, we will use this fact to prove
a new and stronger version of the theorem. We want to show that the path
φ
(
Γ(0),Γ(s)

)
is entirely contained in Q2,4 and therefore the osculating conics

are “more than nested”, they are convexly nested.

4.4

Osculating conics are convexly nested

To prove this new theorem we will use the same approach, the tangent vector
analysis. So far, we have studied its contribution at the origin, now let us see the
nature of the tangent vector at another point d

ds
φ
(
Γ(0),Γ(s)

)∣∣∣
s=s0

. We already
know that the binary quartic that it represents is obtained by inserting the
polynomial parametrization ρ

(
Γ(0)

)
into the implicit equation of the double

line d
ds

Γ(s)
∣∣∣
s=s0

which is tangent to Γ(s0) at γ(s0). From the previous result,
we can assume that the conic Γ(0) is entirely contained in the inside of the
conic Γ(s0), up to changing the direction in which we traverse the arc γ.

Figure 4.2: The osculating conics are nested.

Since Γ(0) is contained within Γ(s0), there cannot be any intersection between
the first conic and any line tangent to the second. This already shows us that
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d
ds
φ
(
Γ(0),Γ(s)

)∣∣∣
s=s0

∈ P2,4 is a positive quartic, and with the help of a lemma
about convex functions, we will show that it is also convex.

Lemma 4.4.1. Let f be a real convex function, and let g be a real non-
decreasing and convex function. Then the composite g ◦ f is also convex.

Proof. Take λ ∈ [0, 1] and x, y in the domain of f . Then it holds that:

g
(
f(λx+ (1 − λ)y)

)
≤ g

(
λf(x) + (1 − λ)f(y)

)
≤ λg

(
f(x)

)
+ (1 − λ)g

(
f(y)

)
.

Therefore g ◦ f is convex.

Let us now apply the lemma in our context. We have the following function to
analyse:

d

ds
φ
(
Γ(0),Γ(s)

)∣∣∣
s=s0

= d

ds
Γ(s)

∣∣∣
s=s0

◦ ρ
(
Γ(0)

)
.

As a binary quartic, consider it as a function from R2 to R. We know that
d
ds

Γ(s)
∣∣∣
s=s0

is the implicit equation of a double line of the projective plane, so
it is of the form:

d

ds
Γ(s)

∣∣∣
s=s0

= (Ax+By + Cz)2, A,B,C ∈ R.

While ρ
(
Γ(0)

)
is a polynomial parametrization of Γ(0), which we can write as

ρ
(
Γ(0)

)
=
(
x0(t, w), x1(t, w), x2(t, w)

)
. In the end we have the expression:

d

ds
φ
(
Γ(0),Γ(s)

)∣∣∣
s=s0

=
(
Ax0(t, w) +Bx1(t, w) + Cx2(t, w)

)2
.

In order to apply lemma 4.4.1, we shall consider the map above as the
composite of the following functions:

g : [0,∞) → R f : R2 → R

g(x) = x2 f(t, w) =Ax0(t, w) +Bx1(t, w) + Cx2(t, w)
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The function f is the binary quadratic form produced by inserting the
polynomial parametrization of Γ(0) into the implicit equation of the tangent
line to Γ(s0) at γ(s0). Since these curves do not intersect, we know that f
has no real roots, so its discriminant is negative. Therefore, we can conclude
that this function is positive and convex, up to taking −f instead if necessary.
Now both functions g and f follow the hypothesis of the lemma, and thus
we conclude that d

ds
φ
(
Γ(0),Γ(s)

)∣∣∣
s=s0

is a positive and convex quartic as we
claimed.

There is only one step left to prove Theorem 4.0.1. The quartic that compares
two osculating conics may be obtained by the following integral:

φ
(
Γ(0),Γ(s0)

)
=
∫ s0

0

d

ds
φ
(
Γ(0),Γ(s)

)
ds.

A linear combination with positive coefficients of nonnegative and convex
functions is still a nonnegative and convex function. This fact is illustrated
by the convexity of the Q2.4 blender. So, this property extends to integrals and
therefore we can conclude that φ

(
Γ(0),Γ(s0)

)
∈ Q2,4 is a positive and convex

quartic. This concludes the proof that the osculating conics of a smooth arc
on the real projective plane without inflections or sextactic points are disjoint
and convexly nested.



5

Characterizations of the Convex Nesting

In Chapter 4, we have proved that the osculating conics of a smooth curve with
no inflections or sextactic points are convexly nested. We now dive further
and show, with the help of algebraic invariants of binary quartics, that the
condition on the relative position of two very close osculating conics is even
stronger. But first, we introduce a technique to narrow down our moduli
space of conics of signature (1, 2). By making good use of the PGL(3;R)
action, we may take any pair of conics to a normal form where one of them
becomes c = −x2 − y2 + z2 and the other is mapped to −αx2 − βy2 + z2.
We call this procedure the simultaneous diagonalization of the pair of conics.
Notice how it is consistent with respect to dimension counting. Each conic
is given projectively by 5 degrees of freedom, while the group PGL(3;R) is
8−dimensional. So, in the end, only 2 parameters remain to be determined,
which are α and β in the expression of the second conic. We have thus managed
to reduce the dimension of the moduli space to 2, making the ensuing analysis
much simpler.

5.1

Simultaneous diagonalization

In this section, we make full use of the projective group PGL(3;R) in order to
map a pair of non-intersecting conics of RP2 to a particular configuration that
facilitates our study of their relative position. The following lemma is found in
[Ghys2] on page 22 and is attributed to Milnor.

Lemma 5.1.1. Let U and V be two symmetric n × n matrices with n ≥ 3.
Assume that there is no vector v ∈ Rn which is simultaneously isotropic for U
and V , that is such that vTUv = vTV v = 0. Then there is a basis in which
both U and V are diagonal.

In essence, this lemma states that if there is no common isotropic vector for
U and V , then there exists a matrix A ∈ GL(n;R) such that ATUA and
ATV A are both diagonal matrices. Let us now apply this result in our setting
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of conics in RP2. A conic u is a quadratic form, for which we may associate
a 3 × 3 symmetric matrix U . A vector v = (x, y, z) is isotropic for U if and
only if the point (x : y : z) ∈ RP2 belongs to the conic u. Therefore, if a pair
of conics u and v have no intersection in RP2, then there exists a projective
transformation A ∈ PGL(3;R) that simultaneously diagonalizes the associated
symmetric matrices.

In addition, by appropriately rescaling the x and y axis, we may map the
conic u to c, while v is still represented by a diagonal matrix. If v is non-
degenerate, then the 3 coefficients present in the diagonal cannot be 0, and
since every multiple λv represents the same conic, we may set the coefficient
of z2 to be 1. In summary, up to a projective transformation we have that
A.u = c = −x2 − y2 + z2 and A.v = −αx2 − βy2 + z2, with α ̸= 0 and β ̸= 0.
Moreover, since there can be no intersection between c and A.v, there are only
three different possibilities: i) Both α and β are strictly greater than 1, in which
case c is in the component isomorphic to the Möbius band and thus φ(c, v)
is negative. ii) Both α and β are between 1 and 0, in which case c is in the
component isomorphic to the disc and hence φ(c, v) is positive. iii) Either α
or β is between 1 and 0 and the other is negative, in which case the signature
of v is (2, 1), so we should instead consider −v and, fittingly, c is again in the
component isomorphic to the Möbius band.

From the point of view of the group action, we have used 5 degrees of freedom
of PGL(3;R) to map u to c and then the other 3 degrees of freedom of PO (2, 1)
(the stabilizer of c, presented in more details in subsection 6.1.3) to constrain v
to a particular form, where it is no longer defined by 5 parameters, but only 2,
namely α and β. Notice that in the affine chart z = 1 the conic A.v is centered
at (0, 0) and its axes of symmetry coincide with the x and y axes.

A corresponding simplification also happens in the algebraic setting, where
the PGL(2;R) action may take φ(u, v) to a particular normal form. As-
suming without loss of generality that v = −αx2 − βy2 + z2, we have that
φ(u, v) = (1 − α)t4 + (2α− 4β + 2)t2w2 + (1 − α)w4. Since α ̸= 1, we may di-
vide the quartic by 1 − α and get a representative of the form:

φ(u, v) = t4 + 2α−4β+2
1−α

t2w2 + w4 = t4 + 6λt2w2 + w4, where λ = α−2β+1
3(1−α) . (5.1)

The normal form fλ(t, w) = t4 + 6λt2w2 + w4 is present in Bruce Reznick’s
article [Reznick]. There he explains that, generically, any binary quartic is
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equivalent under the PGL(3;C) action to one such fλ for some λ ∈ R. The term
“generically” is necessary because some particular quartics, as p(t, w) = t4, are
not equivalent to any such fλ. Also, we do not want to use complex numbers in
the change of variable. Fortunately, in the context of the non-intersecting conics
c and v, we have already seen that the quartic φ(c, v) is of the desired normal
form and we even know how the parameter λ is related to the coefficients of
the conic v.

Let us recall some results from Reznick’s paper that we have presented in
section 2.2.7. Any strictly positive binary quartic is equivalent to fλ for some
λ in the interval ] − 1/3, 1/3]. Notice that when α = β, we have the case in
which λ = 1/3, and when β → 1, then λ → −1/3. The case where α > 1,
β > 1 and α → 1 at first glance would result in λ → ∞, but we are soon going
to see that this is equivalent to λ → −1/3. The quartic t4 + 6λt2w2 + w4 is
nonnegative if and only if λ ≥ −1/3, because in this case, for any pair (t, w),
its image is greater than t4 − 2t2w2 + w4 = (t2 − w2)2 ≥ 0, and we have the
opposite inequality if λ < −1/3, so the image of (1, 1) is negative. Now, to see
that we only need to consider λ ≤ 1/3, let us define gλ(t, w) := fλ(t+w, t−w).
Then we have that:

gλ(t, w) = (t+ w)4 + 6λ(t+ w)2(t− w)2 + (t− w)4

= (1 + 6λ+ 1)t4 + (6 − 12λ+ 6)t2w2 + (1 + 6λ+ 1)w4

= (2 + 6λ)
(
t4 + 6 1 − λ

1 + 3λt
2w2 + w2

)
.

gλ(t, w) = (2 + 6λ)fΘ(λ), where Θ(λ) = 1 − λ

1 + 3λ.

The calculation above shows that fλ ∼ fΘ(λ), so it is useful to study this
rational function Θ(λ). Some of its remarkable properties are: Θ is an in-
volution, that is Θ(Θ(λ)) = λ; Θ(0) = 1; Θ is injective; Θ(1/3) = 1/3;
limλ→−1/3+ Θ(λ) = +∞. This last property justifies our previous claim about
the case where α > 1, β > 1 and α → 1, as from the perspective of the quartics
we have that t2w2 ∼ (t2 − w2)2. Notice, above all, that Θ is a 1-1 decreasing
map from [1/3,+∞[ to ]− 1/3, 1/3], this explains why it is enough to concen-
trate our attention to the ]− 1/3, 1/3] interval, as we do not get any new class
after λ = 1/3.
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Figure 5.1: The graph of Θ(λ) with λ ∈ [−1.5, 1.5].

To conclude his proof, Reznick presents an algebraic manipulation to show that
any positive binary quartic can be put into the normal form fλ. Since we have
previously shown that the pencils of conic through an arbitrary non-degenerate
conic are in bijection with the binary quartics, we have accomplished the
same result as Reznick but with a geometric approach by applying Milnor’s
simultaneous diagonalization theorem to two non-intersecting conics.

Going back to the normal form fλ = t4 + 6λt2w2 + w4, we wish to know for
which values of λ the quartic is nonnegative and convex. Reznick answers this
question stating that fλ belongs to the blender K2,4 if and only if λ ∈ [0, 1].
His prove consists in verifying for which values of λ the catalecticant of fλ is
positive semi-definite. But one may obtain the same result by studying the
Hessian directly. The Hessian of fλ is:

Hfλ
=
12t2 + 12λw2 24λtw

24λtw 12λt2 + 12w2

 .
We already know that the quartic is nonnegative if and only if λ ≥ −1/3. It is
also convex if and only if the Hessian above is positive semi-definite, which is
true if and only if its principal minors are all nonnegative. For 12t2+12λw2 and
12λt2 + 12w2 to be nonnegative, we just need λ ≥ 0. The determinant of the
Hessian is 144λ

(
t4 + 1−3λ2

λ
t2w2 + w4

)
. From what we have already explained,

the determinant is nonnegative for all values of (t, w) if and only if 1−3λ2

λ
≥ −2,

which is true for λ ≤ −1/3 or 0 < λ ≤ 1. When λ = 0, the Hessian is simply
144t2w2, which is nonnegative. In conclusion, fλ is nonnegative and convex if
and only if λ ∈ [0, 1].
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5.1.1

Normal form and the cross-ratio of the roots of the quartic

Another possible approach to analyse the quartic fλ is by studying its roots
and then applying what we have developed in section 2.3. Recall that a positive
binary quartic is convex if and only if the cross-ratio of its roots belongs to
the interval [1, 2]. We notice first that fλ = 0 is a biquadratic equation, so we
can easily compute its roots. They are (tj, 1), j ∈ {1, 2, 3, 4} where

t1 =
√

−3λ+
√

9λ2 − 1 ; t2 =
√

−3λ−
√

9λ2 − 1 ;

t3 = −
√

−3λ−
√

9λ2 − 1 ; t4 = −
√

−3λ+
√

9λ2 − 1 .

We highlight that when λ = ±1/3, the term 9λ2 − 1 vanishes, so they
correspond to quartics with a pair of double roots. If λ = 1/3, then we have
the quartic f1/3 = t4 + 2t2w2 +w4 = (t2 +w2)2, whose roots are tj = ±i. This
corresponds to having α = β, so c and v are concentric circles in the affine chart
z = 1. If λ = −1/3, then we have f−1/3 = t4 − 2t2w2 +w4 = (t2 −w2)2, whose
roots are real tj = ±1. This happens in the case β = 1 and geometrically,
it means that c and v have two intersections where they are tangent. Notice
that it is also the case for α = 1, so these two circumstances are equivalent,
as we have previously shown. The other way in which fλ could have double
roots would be if −3λ±

√
9λ2 − 1 = 0. However, this is impossible, since this

equation implies 9λ2 = 9λ2 − 1.

Since we are focusing on the positive quartics, it is enough to consider
λ ∈ ]− 1/3, 1/3[ so that all four roots are not real and distinct. In order to
apply what we have developed in section 2.3, we must identify the four roots
as z1, z1, z2 and z2 with the condition that z1 and z2 belong to the upper
half plane H. By the definition of the principal branch of the square root for
complex numbers, the roots t1 and t2 are the ones that belong to H, so we
define z1 := t1 and z2 := t2, recalling that the order of these two roots does not
impact the cross-ratio.

(z1, z2; z2, z1) = (z1 − z2)(z2 − z1)
(z1 − z1)(z2 − z2)

.

The four roots of fλ have a remarkable property: they form a rectangle in the
complex plane. Since the quartic has only real coefficients, the roots come in
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conjugate pairs, and as they are not purely imaginary, one has necessarily that
t3 = −z1 = z2 and t4 = −z2 = z1. Therefore, the cross-ratio we shall compute
is (z1, z2; z2, z1) = (t1, t2; t3, t4).

Re

Im

z1z2

−z1 = z2 −z2 = z1

Figure 5.2: Rectangular arrangement of the roots of fλ.

The particular arrangement of the roots simplifies the computation of the cross-
ratio, because for the numerator we have z1 − z2 = 2z1 and z2 − z1 = 2z2. In
addition, the arguments of z1 and z2 must add to π due to the symmetry with
respect to the imaginary axis, and all four roots have absolute value |tj| = 1.
This last fact can be obtained by noticing that the coefficients of t4 and w4

of the quartic fλ are always 1, so that the product of the roots must equal 1.
Due to the rectangular symmetry of the roots, they must all have the same
absolute value, which must thus be 1. Alternatively, one could just do a simple
calculation, for example for t1, it is the square root of a complex number of
absolute value 1, because t21 = −3λ+ i

√
1 − 9λ2, so |t21|2 = 9λ2 + 1 − 9λ2 = 1.

Therefore, the numerator is 2z1.2z2 = −4.

For the denominator, we have z1 − z1 = z1 + z2 and z2 − z2 = z2 + z1.
The real parts of z1 and z2 are opposites, so they cancel out, while
the imaginary parts are the same, so they add up and we get
(z1 + z2)2 = (2i Im(z1))2 = −4(Im(z1))2. Therefore, the cross-ratio is given
by (z1, z2; z2, z1) = 1/(Im(z1))2. To conclude, it remains for us to express the
imaginary part of z1 in terms of the parameter λ. As z2

1 = −3λ +
√

9λ2 − 1
and in general z2

1 = (Re(z1)2 − Im(z1)2) + 2iRe(z1) Im(z1), we have that:

 Re(z1)2 − Im(z1)2 = −3λ ;

2iRe(z1) Im(z1) =
√

9λ2 − 1 .

We are interested in finding (Im(z1))2, so let us isolate Re(z1) in the second
equation and substitute it in the first one.
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2iRe(z1) Im(z1) =
√

9λ2 − 1 ⇐⇒ Re(z1) =
√

1 − 9λ2

2 Im(z1)
;

1 − 9λ2

4(Im(z1))2 − (Im(z1))2 = −3λ ⇐⇒ −4(Im(z1))4 + 12λ(Im(z1))2 + 1 − 9λ2 = 0 .

Denoting (Im(z1))2 by Y , we see that it satisfies the quadratic equation
−4Y 2 + 12λY + 1 − 9λ2 = 0, so Y = −12λ±

√
144λ2+16(1−9λ2)

−8 = −12λ±
√

16
−8 = 3λ±1

2 .
Since Y is the square of a real number, it must be positive, thus Y = 3λ+1

2 . In
conclusion, the cross-ratio of the roots of fλ is (t1, t2; t3, t4) = 2

3λ+1 . This is a
strictly decreasing function in the interval ]− 1/3, 1/3[ and we attain the same
conclusion about the convex quartics, because the cross-ratio is 2 when λ = 0
and, although it is not defined for λ = 1/3 because there are double roots, its
value converges to 1 as λ goes to 1/3. Therefore, for λ in the interval [0, 1/3]
we have positive convex quartics fλ, and as fλ ∼ fΘ(λ) under linear change of
variables, we reach the claim that the quartic in normal form fλ is nonnegative
and convex if and only if λ ∈ [0, 1].

Re

Im
√
i

√
−i

−
√
i −

√
−i

Figure 5.3: For λ ∈ [−1/3, 1/3], fλ is positive and convex if and only if its
roots lie in the blue region.

For the sake of completeness, we also explain what happens to the roots of fλ

for λ ∈ [1/3, 1]. When λ > 1/3, the term 9λ2 − 1 in the square root of all roots
tj is positive, so

√
9λ2 − 1 is a positive real number, but −3λ +

√
9λ2 − 1 is

still negative. Therefore, all four roots are purely imaginary, and as λ ranges
from 1/3 to 1, the roots start as double roots at i and −i, then they part ways
going in opposite directions in the imaginary axis. At the end, when λ = 1,
the four roots reach:
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t1 =
√

−3 + 2
√

2 = i
(√

2 − 1
)

; t2 =
√

−3 − 2
√

2 = i
(√

2 + 1
)

;

t3 = −
√

−3 − 2
√

2 = −i
(√

2 + 1
)

; t4 = −
√

−3 + 2
√

2 = −i
(√

2 − 1
)
.

√
i

√
−i

−
√
i −

√
−i

i
(√

2 − 1
)

i
(√

2 + 1
)

−i
(√

2 − 1
)

−i
(√

2 + 1
)

Figure 5.4: Paths of the roots of fλ as λ goes from 0 to 1.

5.2

Geometric characterization of the convex nesting

In the previous section, we have established an algebraic characterization for
a conic u to be convexly nested into another conic v, namely their associated
quartic φ(u, v) must be in the same class as fλ for some λ ∈ [0, 1]. Now
we move to the following geometric characterization, also making use of the
simultaneous diagonalization.

Theorem 5.2.1. Let u be a non-degenerate conic in RP2. Then u is convexly
nested into another conic v if and only if they do not intersect and, after
realizing a simultaneous diagonalization taking u to −x2 − y2 + z2 and v to
−αx2 −βy2 + z2, the pair (α, β) belongs to the open square ]0, 1[2 and satisfies
1
2 ≤ β−1

α−1 ≤ 2.

Proof. As we have explained, if u and v do not intersect, it is always possible
to find a projective transformation that maps u to −x2 − y2 + 1 and v to
−αx2 − βy2 + 1. Moreover, the only case in which u is in the component
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defined by v that is homeomorphic to the disc is when both α and β belong
to the interval ]0, 1[, hence we have the first constraint on v in order to have
the convex nesting.

This process implies, as shown in equation (5.1), that the quartic φ(u, v) is
equivalent to fλ where λ = α−2β+1

3(1−α) . Therefore, we may use the algebraic result
about λ in order to find the condition with respect to α and β for the conic u
to be convexly nested in v. Recall that the restriction is that 0 ≤ λ ≤ 1.

First, λ ≥ 0 gives us α−2β+1
3(1−α) ≥ 0, which is equivalent to β ≤ α+1

2 . Now the
condition λ ≤ 1 yields α−2β+1

3(1−α) ≤ 1, which is equivalent to β ≥ 2α − 1. These
restrictions are easier to understand if we plot the corresponding regions in the
(α, β) plane.

β = 2α− 1

β = α+1
2

α

β

1

1

0

Figure 5.5: u is convexly nested in v for pairs (α, β) in the blue region.

By examining Figure 5.5, one may realize that β(α) = 2α − 1 is the inverse
function of β(α) = α+1

2 . This is to be expected, since up to a reflection in the
(x, y) plane, which is an element of PO (2, 1), we may interchange the roles
of α and β, and this results in reflecting the (α, β) plane with respect to the
identity. The effect of the reflection also allows us to consider only the cases
where β ≥ α, reducing the moduli space by half.

Notice that the set of conics into which u is convexly nested is one side of a cone
with vertex in u. The region of interest is given precisely by the inequalities of
the claim, that is:

1
2 ≤ β − 1

α− 1 ≤ 2. (5.2)



Chapter 5. Characterizations of the Convex Nesting 85

5.2.1

Pencils of conics in the moduli space

In this subsection we investigate how the pencils of conics manifest themselves
in the moduli space of simultaneously diagonalized conics. We claim that they
are simply the lines joining the two points that represent the respective conics.
To see this, let u = −αux

2 − βuy
2 + z2 and v = −αvx

2 − βvy
2 + z2 be two

distinct conics. An arbitrary conic in the pencil uv is given by:

λu+ µv = −(λαu + µαv)x2 − (λβu + µβv)y2 + (λ+ µ)z2

∼ −λαu + µαv

λ+ µ
x2 − λβu + µβv

λ+ µ
y2 + z2.

Therefore, the conic λu+ µv is represented by the point
(

λαu+µαv

λ+µ
, λβu+µβv

λ+µ

)
in

the moduli space. Let us show that this point belongs to the line that joins u
and v. By applying a translation by (−αu,−βu), which takes u to the origin,
we get

λαu + µαv

λ+ µ
− αu = µ(αv − αu)

λ+ µ
,

λβu + µβv

λ+ µ
− βu = µ(βv − βu)

λ+ µ
.

Notice that the vector
(

µ(αv−αu)
λ+µ

, µ(βv−βu)
λ+µ

)
is a multiple of (αv − αu, βv − βu),

which is the direction vector of the line through the points representing u and
v. Hence, for every (λ : µ) ∈ RP1, the point representing λu+µv is obtained by
adding to the point representing u a multiple of the suitable direction vector,
showing that the conics associated to the points in the line through u and v

are precisely the pencil of conics uv.

(
λαu + µαv

λ+ µ
,
λβu + µβv

λ+ µ

)
= (αu, βu) + µ

λ+ µ
(αv − αu, βv − βu) .

Now that we know that lines in the moduli space of simultaneously diagonalized
conics correspond to pencil of conics, we can interpret the cones of convex
nesting in another way. By definition, the cone is a union of segments, all
having one extremity at the vertex, which represents a given conic u. So the
cone corresponds to a certain set of pencils containing u, and the quartic φ(u, v)
is constant when the second conic v ranges along any segment coming from u.
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5.3

Algebraic invariants of binary quartics

The simultaneous diagonalization has managed to reduce the problem of un-
derstanding the projective relative position of two conics to a single parameter,
as we only need to verify to which PGL(2;R) class the quartic φ(u, v) belongs.
Once it is put in the normal form t4 + 6λt2w2 + w4, we just have to check
whether λ ∈ [0, 1] or not. However, it can be cumbersome to find the suitable
linear change of variables that sends φ(u, v) to the normal form. Fortunately,
this is not necessary, as we may use algebraic invariants to determine the class
of φ(u, v). Here we employ the classical invariant theory, specifically targeting
the binary quartics, which is our focus of interest. For a more detailed source
on the subject, we refer to [Mukai].

As previously explained in Chapter 2, the set of real binary quartics F2,4 is a
5-dimensional vector space, because 5 coefficients must be determined in order
to define such a polynomial. We customarily include binomial coefficients in
the presentation of the forms, so p(t, w) = αt4 + 4βt3w+ 6γt2w2 + 4δtw3 + εw4

is a generic binary quartic.

Consider now the GL(2;R) action on F2,4 by linear change of coordinates. By
changing (t, w) for (at+ bw, ct+ dw), we may get a new quartic whose coeffi-
cients are α′, β′, γ′, δ′, ε′. An invariant of weight k is a polynomial P (α, β, γ, δ, ε)
on the coefficients of the form such that, for any A ∈ GL(2;R), it holds that

P (α′, β′, γ′, δ′, ε′) = det(A)kP (α, β, γ, δ, ε).

One may also consider rational invariants by admitting rational functions on
the coefficients. We are soon going to do so in order to construct weight 0
invariants, the so called absolute invariants. It is crucial to our purposes that
the invariants we use be absolute, because in our context of conics we deal with
the PGL(2;R) action on P(F2,4), and only absolute invariants are well defined
in this setting.

The binary quartics admit infinitely many invariants, but they are all generated
from two basic invariants:
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S = αε− 4βδ + 3γ2 (weight 4);

T = αγε+ 2βγδ − αδ2 − β2ε− γ3 (weight 6).

The discriminant ∆, for example, is an invariant of weight 12 that vanishes if
and only if the quartic has at least one multiple root. It is given in terms of S
and T by:

∆ = S3 − 27T 2.

The most well-known absolute rational invariant is called the J-invariant. It
is given by:

J = S3

∆ = S3

S3 − 27T 2 = 1 + 27T 2

∆ .

Being an absolute invariant, it is natural to expect J to be related to projective
properties of the binary quartic, such as the cross-ratio ξ of its roots. Indeed,
Poston and Stewart present in their paper [Poston] the following formula that
yields the J-invariant as a function of the cross-ratio of the roots ξ:

J(ξ) = 4(ξ2 − ξ + 1)3

27ξ2(ξ − 1)2 .

The function J(ξ) has some interesting symmetries. A generic binary quartic
has 4 distinct roots that do not have any particular ordering. As a consequence
of this lack of ordering, one may obtain up to 6 different values for the
cross-ratio by permuting the roots. In contrast, the quartic has a single well-
defined value for its J-invariant. Thus the six values of the cross-ratio must
result in the same J , more concretely:

J(ξ) = J(1 − ξ) = J

(
1
ξ

)
= J

(
1

1 − ξ

)
= J

(
ξ

ξ − 1

)
= J

(
ξ − 1
ξ

)
.

Poston and Stewart’s paper [Poston] focuses on the visualization of the
PGL(2;C) orbits of F2,4. They explain and illustrate the foliation of the space
of binary quartics with respect to the J-invariant. Although of great help in
understanding the subject, one must take care with the group at play. In our
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context, we are interested in the PGL(2;R) action over F2,4, which is more
restricted than the PGL(2;C) action, and thus yields a different set of orbits.

Since we have a normal form fλ = t4 + 6λt2w2 + w4, with λ > −1/3 for
the positive binary quartics, let us see how the J-invariant behaves as a
function of the parameter λ. First, we obtain S = 1 + 3λ2, T = λ − λ3 and
∆ = (1 + 3λ2)3 − 27(λ − λ3)2 = (1 − 9λ2)2. Through a straight computation,
we get:

J = S3

∆ = (1 + 3λ2)3

(1 − 9λ2)2 = (1 + 3λ2)3

(1 + 3λ)(1 − 3λ) .

We have presented two ways to obtain the J-invariant, one using ξ, the
cross-ratio of the roots, and the other via the parameter λ of the normal form.
Since the J invariant is the same, this gives us an opportunity to verify the
result we have obtained in section 5.1, where we proved that the cross-ratio of
the roots of fλ is ξ = 2

3λ+1 . Indeed, if we substitute ξ by 2
3λ+1 in 4(ξ2−ξ+1)3

27ξ2(ξ−1)2 , we
get the expected (1+3λ2)3

(1−9λ2)2 .

From the formula above, one may observe that J(λ) is an even function. If we
use yet another formula for J , we get an equivalent algebraic expression that
gives us some more information about J(λ).

J = 1 + 27T 2

∆ = 1 + 27(λ− λ3)2

(1 − 9λ2)2

⇐⇒

J − 1
27 =

(
λ− λ3

1 − 9λ2

)2

.

Here we see that the range of J(λ) is [1,+∞] (considering that
J(−1/3) = J(1/3) = +∞), and that it attains its minimum at the three
values of λ for which the invariant T is 0. They are λ = −1, λ = 0 and λ = 1.
One may confirm all these properties in the graph of the function displayed
below.
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Figure 5.6: The graph of J(λ) with λ ∈ [−2, 2].
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At this point we face a problem: more than one class of binary quartics share
the same J-invariant. Indeed, for a regular value of J , there are 6 values of λ
that produce said image. As seen in section 5.1, these actually come in pairs,
because λ and Θ(λ) represent the same class. Moreover, it is enough to consider
λ ∈ ]−1/3, 1/3], since this interval corresponds to the fundamental domain for
the PGL(2;R) action over the set of positive binary quartics, in other words,
each orbit is associated to a single value of λ in this interval. Nevertheless, the
function J(λ) is not injective in the interval ]− 1/3, 1/3], so it is not enough
to distinguish the orbits. Even worse, the same J is associated to an orbit of
convex quartics and to another of non-convex quartics. One possible solution
would be to consider not only the invariant J , but also the sign of the invariant
T , as it is positive for λ ∈ ]0, 1/3] and negative for λ ∈ [−1/3, 0[. Reznick,
however, preferred to use a different absolute invariant, one that contains a
square root in its definition and which he named the K-invariant.

K := T

S3/2 = λ− λ3√
(1 + 3λ2)3

.

Reznick shows in his paper [Reznick] that K(λ) is strictly increasing in the
interval [−1/3, 1/3], which implies that each class of positive binary quartics
is associated to a single value of K. The range of K(λ) is the interval
[−

√
3/9,

√
3/9], attaining its minimum at λ = −1/3 and its maximum at

λ = 1/3. In addition, K(λ) is an odd function, and any given positive quartic
is convex if and only if its K-invariant is nonnegative. The graph below
synthesizes and displays these informations.
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λ - λ3
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Figure 5.7: The graph of K(λ) with λ ∈ [−2, 2].

The relation between the invariants K and J is that K2 = 1
27

(
1 − 1

J

)
= T 2

S3 .
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With all this knowledge about the algebraic invariants of binary quartics and
how they relate to the convexity of the forms, we shift our focus back to
the osculating conics. In the next sections, we present a universal quadratic
parametrization that suits any generic curve parametrized by the projective
length, and use it to produce the first terms of the Taylor series of the algebraic
invariants of the associated binary quartic. The concepts of projective length
and projective curvature are better presented in Chapter 6. In what follows, we
just use a particular parametrization that any smooth projective curve with
no inflection or sextactic points admits.

5.4

Algebraic invariants of quartics arising from osculating conics

In this section, we analyse the behaviour of a regular curve in RP2 away from
an inflection or sextactic point. We prove that for a sufficiently small ε > 0, the
J-invariant arising from the quartic related to the osculating conics at s = 0
and at s = ε is close to 32/27 and its K-invariant is close to

√
30/72. We

reach these results by computing the first terms of the power series of these
invariants:

Theorem 5.4.1. For any regular curve, as long as there is no inflection or
sextactic point, the power series of the J and K invariants are respectively
J(s) = 32

27 + 8
189ks

2 +O(s3) and K(s) =
√

30
72 + 3

√
30

2240 ks
2 +O(s3), where k is the

projective curvature of the curve being analysed at s = 0.

The proof of the theorem above will be given throughout this section.

5.4.1

A general quadratic parametrization for osculating conics

Here we employ what may seem to be at first glance a specific condition on the
parametrization of the curve, but, as we will show in section 6.1, it does not
restrict the set of curves we are working with at all, because we may always find
the suitable parametrization in the context of projective geometry. Consider a
smooth curve x(s) satisfying the differential equation

x′′′(s) + 2k(s)x′(s) + (k′(s) + 1)x(s) = 0, (5.3)

where s is the projective length and k is the projective curvature of the curve.
Consider also the Frenet frame {x,x1,x2} defined by:



Chapter 5. Characterizations of the Convex Nesting 91


x′ = x1

x′
1 = −kx + x2

x′
2 = −x − kx1

(5.4)

Let u(s) denote the osculating conic of the curve at the point x(s). First we
prove that the conic may be parametrized as a curve in RP2 by a particular
quadratic expression involving the vectors of the Frenet Frame.

Proposition 5.4.2. The osculating conic u(s0) of x(s) at s0 admits the
parametrization us0 : RP1 → RP2 given by

us0(t, w) = 1
2t

2x2(s0) + twx1(s0) + w2x(s0). (5.5)

Proof. We need to show that the contact between the curves x(s) and u(s0)
at their intersection is of order at least 5. To do so, let U(s0) be a 3 × 3
symmetric matrix such that the function (x, y, z)U(s0)(x, y, z)T = 0 is the
implicit equation of u(s0). Then, for all values of (t, w) ∈ RP1, we have that

us0(t, w)U(s0)us0(t, w)T = 0. (5.6)

In order to simplify the notation, we shall write: ⟨y1,y2⟩ := y1U(s0)yT
2 . Also,

since all calculations are at the value s0, we omit it in the following expressions.

Taking (t, w) = (0, 1) in equation (5.6) we obtain:

⟨x,x⟩ = 0. (5.7)

Differentiating equation (5.6) with respect to t and taking (t, w) = (0, 1) we
obtain:

⟨x,x1⟩ = 0. (5.8)

Differentiating equation (5.6) two times with respect to t and taking
(t, w) = (0, 1) we obtain:

⟨x,x2⟩ + ⟨x1,x1⟩ = 0. (5.9)

Differentiating equation (5.6) three times with respect to t and taking
(t, w) = (0, 1) we obtain:

⟨x1,x2⟩ = 0. (5.10)

Finally differentiating equation (5.6) four times with respect to t we obtain:

⟨x2,x2⟩ = 0. (5.11)
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Now, consider the function g(s) := x(s)U(s0)x(s)T. This function evaluates
the contact of the conic u(s0) with the curve x(s) at the point x(s0). More
precisely, the order of its zero at s = s0 indicates the order of contact between
the two curves.

From equation (5.7), we know that g(s0) = 0. Since g′(s) = 2 ⟨x(s),x1(s)⟩,
from equation (5.8) we have that g′(s0) = 0. The second derivative of
g is g′′(s) = 2 ⟨x1(s),x1(s)⟩ + 2 ⟨x(s),x2(s) − k(s)x(s)⟩. So, from equa-
tions (5.7) and (5.9), we have g′′(s0) = 0. The third derivative of g is
g′′′(s) = 6 ⟨x1(s),x2(s) − k(s)x(s)⟩ + 2 ⟨x(s),−(1 + k′(s))x(s) − 2k(s)x1(s)⟩.
Thus, from equations (5.7), (5.8) and (5.10), we obtain g′′′(s0) = 0. Finally,
differentiating g′′′ at s0 directly, we get:

giv(s0) = 6 ⟨x2 − kx,x2 − kx⟩ + 6 ⟨x1,−x − 2kx1 − k′x⟩

+ 2 ⟨x1,−(1 + k′)x − 2kx1⟩ + 2
〈
x, (2k2 − k′′)x − (1 + 3k′)x1 − 2kx2

〉
.

Using equations (5.7), (5.8), (5.9) and (5.11), we conclude that giv(s0) = 0, thus
proving that the order of contact between x(s) and u(s0) at x(s0) is at least
5, which implies that u(s0) is indeed the osculating conic at the corresponding
point.

5.4.2

The generic binary quartic of osculating conics and its invariants

With the quadratic parametrization found in subsection 5.4.1, we now compute
the coefficients of the binary quartic related to the osculating conics at 0 and
at an arbitrary s.

φ(u(s), u(0))(t, w) = us(t, w)U(0)us0(t, w)T. (5.12)

Since we have fixed the conic at 0 as the one that contributes with its implicit
equation, we adapt the notation introduced in subsection 5.4.1 by setting
s0 = 0. In other words, we denote ⟨y1,y2⟩ = y1U(0)yT

2 . Now we may use
this notation and the quadratic parametrization 5.5 to express the coefficients
of the quartic.

φ(u(s), u(0))(t, w) = a(s)t4 +4b(s)t3w+6c(s)t2w2 +4d(s)tw3 +e(s)w4, (5.13)
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where
a(s) = 1

4 ⟨x2(s),x2(s)⟩ , d(s) = 1
2 ⟨x(s),x1(s)⟩ ,

b(s) = 1
4 ⟨x1(s),x2(s)⟩ , e(s) = ⟨x(s),x(s)⟩ ,

c(s) = 1
6 (⟨x(s),x2(s)⟩ + ⟨x1(s),x1(s)⟩) .

Next, since we wish to determine the terms of the power series up to the order of
s2, we must compute three terms of the Taylor expansions of the coefficients at
s = 0 starting from the first non-zero term. Notice that since φ(u(0), u(0)) = 0
is the identically zero form, every such expansions has zero constant term.

In the following computations, the definition of the Frenet Frame (5.4)
and relations (5.7) through (5.11) are going to be very useful as we
may write the derivatives of the coefficients of the quartic as a func-
tion of the other coefficients. In addition, let us define an auxiliary term
f(s) := −1

2 ⟨x(s),x2(s)⟩ and a constant α := ⟨x1(0),x1(0)⟩, which immediately
implies that ⟨x(0),x2(0)⟩ = −α. Now, a straightforward computation yields
the following derivatives:

a′(s) = f(s) − 2k(s)b(s), d′(s) = 3c(s) − 1
2k(s)e(s),

b′(s) = a(s) − 3
2k(s)c(s) − 1

2d(s), e′(s) = 4d(s),

c′(s) = 2b(s) − k(s)d(s) − 1
6e(s), f ′(s) = −2b(s) + k(s)d(s) + 1

2e(s).

We have thus a first order linear system of ODEs, with the presence of
the projective curvature k(s) in its coefficients. By employing these rela-
tions recursively, we may obtain all the terms we seek. Since we know that
a(0) = b(0) = c(0) = d(0) = e(0) = 0, the coefficients of the power series will
not vanish only when the term f(0) = α/2 is present. With this observation in
mind, we may simplify the calculation by ignoring the terms that will not yield
the term f after the suitable number of differentiations. We shall denote this
operation by the symbol ∼. In the results that follow, we denote the projective
curvature at zero as k for simplicity of notation.

Lemma 5.4.3. The Taylor expansion of the coefficient a(s) is

a(s) = 1
2αs− 1

6kαs
3 +O(s4).
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Proof. We have a′ = f − 2kb, so a′(0) = f(0) = 1
2α.

Next, a′′ = f ′ − 2k′b− 2kb′ ∼ −2kb′ = −2k
(
a− 3

2kc− 1
2d
)

∼ −2ka.
So a′′(0) = 0.

Finally, a′′′ ∼ −2k′a− 2ka′ ∼ −2ka′ = −2k (f − 2kb).
So a′′′(0) = −2k(0)f(0) = −kα.

Lemma 5.4.4. The Taylor expansion of the coefficient b(s) is

b(s) = 1
4αs

2 − 5
48kαs

4 +O(s5).

Proof. We have b′ = a− 3
2kc− 1

2d, so b′(0) = 0.

Next, b′′ = a′ − 3
2k

′c− 3
2kc

′ − 1
2d

′ ∼ a′ − 3
2kc

′ = f − 2kb− 3
2k
(
2b− kd− 1

6e
)

∼ f − 5kb. So b′′(0) = 1
2α.

Next, b′′′ ∼ f ′ − 5k′b− 5kb′ ∼ −5kb′ = −5k
(
a− 3

2kc− 1
2d
)

∼ −5ka.
So b′′′(0) = 0.

Finally, biv ∼ −5k′a− 5ka′ ∼ −5kf . So biv(0) = −5
2kα.

Lemma 5.4.5. The Taylor expansion of the coefficient c(s) is

c(s) = 1
6αs

3 − 1
15kαs

5 +O(s6).

Proof. We have c′ = 2b− kd− 1
6e ∼ 2b− kd, so c′(0) = 0.

Next, c′′ = 2b′ − k′d− kd′ ∼ 2b′ − kd′ = 2
(
a− 3

2kc− 1
2d
)

− k
(
3c− 1

2ke
)

∼ 2a− 6kc. So c′′(0) = 0.

Next, c′′′ ∼ 2a′ − 6k′c− 6kc′ ∼ 2a′ − 6kc′ = 2(f − 2kb) − 6k(2b− kd− 1
6e)

∼ 2f − 16kb. So c′′′(0) = α.

Next, civ ∼ 2f ′ − 16k′b− 16kb′ ∼ −16kb′ = −16k
(
a− 3

2kc− 1
2d
)

∼ −16ka.
So civ(0) = 0.

Finally, cv ∼ −16k′a− 16ka′ ∼ −16kf . So cv(0) = −8kα.

Lemma 5.4.6. The Taylor expansion of the coefficient d(s) is

d(s) = 1
8αs

4 − 1
24kαs

6 +O(s7).
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Proof. We have d′ = 3c− 1
2ke, so d′(0) = 0.

Next, d′′ = 3c′− 1
2k

′e− 1
2ke

′ ∼ 3c′− 1
2ke

′ = 3
(
2b− kd− 1

6e
)
− 1

2k (4d) ∼ 6b−5kd.
So d′′(0) = 0.

Next, d′′′ ∼ 6b′ − 5k′d− 5kd′ ∼ 6b′ − 5kd′ = 6
(
a− 3

2kc− 1
2d
)

− 5k
(
3c− 1

2ke
)

∼ 6a− 24kc. So d′′′(0) = 0.

Next, div ∼ 6a′ −24k′c−24kc′ ∼ 6(f −2kb)−24k
(
2b− kd− 1

6e
)

∼ 6f −60kb.
So div(0) = 3α.

Next, dv ∼ 6f ′ − 60k′b− 60kb′ ∼ −60kb′ ∼ −60ka. So dv(0) = 0.

Finally, dvi ∼ −60kf . So dvi(0) = −30kα.

Lemma 5.4.7. The Taylor expansion of the coefficient e(s) is

e(s) = 1
10αs

5 − 1
42kαs

7 +O(s8).

Proof. Since e′ = 4d, it is easy to find its power series from the one we already
know for d(s). We have that:

e′(0) = 4d(0) = 0;

e′′(0) = 4d′(0) = 0;

e′′′(0) = 4d′′(0) = 0;

eiv(0) = 4d′′′(0) = 0;

ev(0) = 4div(0) = 12α;

evi(0) = 4dv(0) = 0;

evii(0) = 4dvi(0) = −120kα.

We may obtain the Taylor expansion of the invariants of the binary quartic
φ(u(s), u(0)) now that we know the expansions around s = 0 of its coefficients.
Recall that the invariants S and T are given by

S = ae− 4bd+ 3c2, T = ace+ 2bcd− ad2 − b2e− c3.

Therefore, their respective Taylor expansions are:

S(s) = 1
120α

2s6− 1
672kα

2s8+O(s9), T (s) = 1
17280α

3s9− 1
100800kα

3s11+O(s12).
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The invariant ∆ is given by ∆ = S3 − 27T 2. Hence, its expansion is

∆(s) = 1
2048000α

6s18 − 1
3584000kα

6s20 +O(s21).

The J-invariant is defined as J = S3/∆. We may compute the power series
of this ratio, since we know the series of the numerator and denominator. By
doing the calculation, a significant simplification plays out and we get the main
result of this section, namely, the power series of J(s).

J(s) = 32
27 + 8

189ks
2 +O(s3).

Even though the J-invariant is not defined for the identically zero form, we
may observe the limit as the parameter s goes to zero. It is clear that the
limiting value is 32/27. By doing a similar analysis in order to find the power
series for the K-invariant we obtain:

K(s) =
√

30
72 + 3

√
30

2240 ks
2 +O(s3).

So the limiting value for the K-invariant is
√

30/72.

These results provide us with some new information about the osculating conics
of a regular curve away from inflections and sextactic points. Not only are they
convexly nested (with J-invariant in [1,+∞] for the associated binary quartic),
but, at least locally, they yield quartics with J-invariant close to 32/27. We
remark that the value of the parameter λ in the normal form that results in
J = 32/27 is λ =

√
5−2
3 , and the cross-ratio of the roots is ξ = 1+

√
5

2 , the
golden ratio. Although we do not know an explanation for this phenomenon,
the presence of the golden ration seems to indicate an important property.
When the projective curvature is positive, k > 0, the osculating conics locally
produce quartics with J > 32/27. We propose the term harmonic nesting to
emphasise when this happens.



6

Logarithmic Spirals

In this chapter, we are interested in solving the following reciprocal problem.
Given two conics u and v in RP2, under which conditions there exists a curve
γ(s) with no inflections nor sextactic point that joins them, that is, a curve
such that u is the osculating conic at γ(0) and v is the osculating conic at γ(s0)
for some value s0 ∈ R? In light of the result found in Section 5.4.2 about the
algebraic invariants of the quartic related to the osculating conics, we should
consider the values of the invariants of φ(u, v) beforehand. We claim that, if the
J-invariant of φ(u, v) is greater than 32/27, then by using logarithmic spirals,
we can obtain a partial solution to this question. We will show that one can
always find a logarithmic spiral with zero projective curvature that has u and
some conic of the pencil generated by u and v as its osculating conics. So let
us first introduce this particular family of curves.

6.1

Logarithmic spirals of zero projective curvature

Let us first define the projective curvature and then find all curves for which
it is identically zero. The following explanation can be found in [Craizer].

Consider x : (−ε, ε) → RP2, x(t) = (x(t) : y(t) : z(t)) a smooth curve in RP2

and let us denote the determinant of a matrix whose columns are given by three
vectors x1, x2 and x3 by |x1,x2,x3|. We say that a smooth curve is strictly
convex when for all values of the parameter t, we have |x′′(t),x′(t),x(t)| ̸= 0.
Notice that this condition already implies that the curve x(t) has no inflection
point. Let us assume that |x′′(t),x′(t),x(t)| > 0 for all values of t. Since this
three vectors are always linearly independent, they form a continuous family
of basis of R3. So we may write x′′′(t) in this basis as

x′′′ + px′′ + qx′ + rx = 0.
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p = −|x′′′,x′,x|
|x′′,x′,x|

, q = |x′′′,x′′,x|
|x′′,x′,x|

, r = −|x′′′,x′′,x′|
|x′′,x′,x|

.

Now let us define a real function H : (−ε, ε) → R by making use of the
coefficients p(t), q(t) and r(t) above as H(t) := r− 1

3pq+ 2
27p

3 − 1
2q

′ + 1
3pp

′ + 1
6p

′′.
Assuming that H(t) ̸= 0 for all values of t, we may define the projective length
σ(t) of the curve x(t) by

σ(t) :=
∫ t

0
3
√
H(u)du.

Let us assume that the curve x(σ) is parametrized by its projective length. In
this case, the function H(σ) ≡ 1 is constant. Since our setting is the projective
plane, for any non-vanishing real function λ : (−ε, ε) → R, we have that
x(σ) and λ(σ)x(σ) describe the same curve. By taking the suitable function
λ(σ) = exp(1

3
∫ σ

0 p(t)dt), one may ensure that the coefficient p(σ) is identically
zero. In other words, we may assume that x satisfies the following system of
equations for all values of σ.


x′′′(σ) + q(σ)x′(σ) + r(σ)x(σ) = 0,

H(σ) = r(σ) − 1
2q

′(σ) = 1.

We define the projective curvature k : (−ε, ε) → R as the function given by
k(σ) = 1

2q(σ). Notice that in the parametrization we are considering, it also
holds that k′(σ) = r(σ) − 1. With this new object in hand, we may define
the Frenet frame of the curve x. It is the frame {x,x1,x2} defined by the
equations:



∂x
∂σ

= x1

∂x1

∂σ
= −kx + x2

∂x2

∂σ
= −x − kx1

Now let us find which curves have zero projective curvature. The condition
k(σ) ≡ 0 implies that q(σ) ≡ 0 and r(σ) ≡ 1. Then the differential equation for
the curve x becomes x′′′(σ) + x(σ) = 0. Considering the analogous differential
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equation in the setting of real functions, we have y′′′(x) + y(x) = 0, which is a
homogeneous linear differential equation of degree 3. The generic solution for
this equation is:

y(x) = C1e
−x + C2e

x/2 cos
(√

3x
2

)
+ C3e

x/2 sin
(√

3x
2

)
, C1, C2, C3 ∈ R.

If we set each term of the solution above as one of the functions for the
homogeneous coordinates of the curve x(σ), we get a curve of zero projective
curvature.

x(σ) =
(
eσ/2 cos

(√
3σ
2

)
: eσ/2 sin

(√
3σ
2

)
: e−σ

)
.

-1 1 2 3

-1

1

2

3

Figure 6.1: A logarithmic spiral with zero projective curvature.

We have found that a particular logarithmic spiral has zero projective cur-
vature. However, since the entire setting is invariant under projective trans-
formations, we can make good use of the projective group PGL(3;R) to
obtain a larger class of solutions. Indeed, for any projective transformation
A ∈ PGL(3;R), the curve A.x(σ) is also a solution for the differential equa-
tion, so its projective curvature is also k(σ) ≡ 0. Moreover, any solution of the
differential equation can be obtained by one such projective transformation
of x. Therefore, there exists an 8-dimensional family of curves of zero projec-
tive curvature, all projectively equivalent to the logarithmic spiral described
above. We will refer to any element of this set as a zero projective curvature
logarithmic spiral.
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Figure 6.2: Some more logarithmic spirals of zero projective curvature.

From the point of view of projective geometry, they are all the same curve, just
as all nondegenerate conics are the same curve. Nevertheless, since we want
the logarithmic spiral to have a pair of specifically designated conics in the set
of its osculating conics, we do get different paths of osculating conics for each
representative of the class. There exists, however, a one-parameter subgroup
of PGL(3;R) that does not change much this standard logarithmic spiral x(σ)
due to the self-similarity that it displays. More specifically, there is a subgroup
G parametrized by s ∈ R that preserves the curve globally, only advancing the
parameter of the curve by s. Let us take a close look at x(σ + s).

x(σ + s) =
(
eσ/2+s/2 cos

(√
3σ
2 +

√
3s
2

)
: eσ/2+s/2 sin

(√
3σ
2 +

√
3s
2

)
: e−σ−s

)

=
(
eσ/2

(
cos

(√
3σ
2

)
cos

(√
3s
2

)
− sin

(√
3σ
2

)
sin

(√
3s
2

))
: eσ/2

(
sin

(√
3σ
2

)
cos

(√
3s
2

)
+ cos

(√
3σ
2

)
sin

(√
3s
2

))
: e−σ−3s/2

)
.

x(σ + s) =


cos

(√
3s
2

)
− sin

(√
3s
2

)
0

sin
(√

3s
2

)
cos

(√
3s
2

)
0

0 0 1





1 0 0

0 1 0

0 0 e−3s/2


x(σ).

The equality above shows that by applying an Euclidean rotation of
√

3s
2 in

the (x, y) plane and a homothety with respect to the origin of factor e3s/2 to
x(σ), one gets the same curve, but every point advances with respect to the
parameter σ by a fixed amount s. In terms of the PGL(3;R) action on the
family of zero projective curvature logarithmic spirals, the subgroup G allows
us to move freely the point corresponding to σ = 0. We will later make good
use of this subgroup to move the point of contact of a given osculating conic.
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6.1.1

Osculating conics of a logarithmic spiral

Let γ : (−ε, ε) → RP2 be a smooth projective curve. For a given value
s0 ∈ (−ε, ε), how can we determine the osculating conic at the point γ(s0)?
Consider u(x, y, z) = ax2+by2+cz2+2fxz+2gyz+2hxz, the implicit equation
of a generic conic. As we have discussed in section 4.2, for it to be the osculating
conic of γ at γ(s0), the composite u ◦ γ must have a zero of order at least 5 at
that point. In other words, the following system of equations must be satisfied.



u◦γ (s0) = 0

d
ds

(u◦γ)(s0) = 0

d2

ds2 (u◦γ)(s0) = 0

d3

ds3 (u◦γ)(s0) = 0

d4

ds4 (u◦γ)(s0) = 0

We have 5 independent linear equations on the coefficients of u. Thus we have
a one dimensional subspace of R6 of solutions, that is, a point of RP5 which
corresponds to the unique osculating conic at γ(s0). One may think of u(x, y, z)
as a quadratic form, whose associated symmetric bilinear form U(v1,v2) is
given by the symmetric matrix

MU =


a h f

h b g

f g c

 .

The evaluation of the bilinear form U on two generic vectors v1 and v2 is
U(v1,v2) = vT

1MUv2. One may recover the implicit equation of the conic by
taking u(x, y, z) = (x, y, z)TMU(x, y, z). With the help of the bilinear form
U , it is easy to compute the derivatives of u ◦ γ(s), since it can be rewritten
as u ◦ γ(s) = U(γ(s), γ(s)). Now the system of equations that defines the
osculating conic becomes the one below. All expressions are evaluated at s0,
we have omitted it for simplicity.
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

U(γ, γ) = 0
d
ds
U(γ, γ) = 2U(γ, γ′) = 0

d2

ds2U(γ, γ) = 2 (U(γ′, γ′) + U(γ, γ′′)) = 0
d3

ds3U(γ, γ) = 2 (3U(γ′, γ′′) + U(γ, γ′′′)) = 0
d4

ds4U(γ, γ) = 2 (3U(γ′′, γ′′) + 4U(γ′, γ′′′) + U(γ, γiv)) = 0

In the case where γ is a zero projective curvature logarithmic spiral, the
system becomes even simpler, because γ′′′(s) = −γ(s) and γiv(s) = −γ′(s)
for every value of s. Consequently, the osculating conic at γ(s0) is the one
whose coefficients satisfy:



U(γ, γ) = 0

U(γ, γ′) = 0

U(γ′, γ′) + U(γ, γ′′) = 0

U(γ′, γ′′) = 0

U(γ′′, γ′′) = 0

Let us now fix γ(s) =
(
es/2 cos

(√
3s
2

)
: es/2 sin

(√
3s
2

)
: e−s

)
and compute its

osculating conic at s = 0. We have at this point: γ(0) = (1 : 0 : 1),
γ′(0) = (1/2 :

√
3/2 : −1) and γ′′(0) = (−1/2 :

√
3/2 : 1). By applying

these values in the osculating conic’s system of equation above, we have:



a+ c+ 2f = 0

a− 2c− f +
√

3g +
√

3h = 0

−a+ 3b+ 8c− 2f − 2
√

3g + 4
√

3h = 0

−a+ 3b− 4c+ 4f = 0

a+ 3b+ 4c− 4f + 4
√

3g − 2
√

3h = 0

The system can be simplified and then it becomes easy to find a solution by
setting c = 1.
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

a+ 5c = 0

b+ 3c = 0

f − 2c = 0

g − 2
√

3c = 0

h−
√

3c = 0

Therefore, the osculating conic to the logarithmic spiral at s = 0 is
−5x2 − 3y2 + z2 + 4xz + 4

√
3yz + 2

√
3xy = 0.

The calculation for the osculating conic at a generic point as a function of s is
more laborious, but it can be done by a mathematical computation program
such as Mathematica or Maple. As in section 4.2.1, we may reparametrize
the curve of osculating conics by multiplying all coefficients by a positive real
function λ(s) so that the tangent vector of this curve always points in the
direction of a degenerate conic, specifically the double line tangent to the curve
γ at the point γ(s). So first we set c(s) = λ(s) and find the expressions for
all coefficients in terms of λ(s). Then, by solving the appropriate differential
equation, we find that the suitable function is simply λ(s) = e2s, and thus
we obtain the coefficients of the osculating conics as a function of s. This
computation was realized with the help of Mathematica.

a(s) = −4e−s −
√

3e−s sin
(√

3s
)

− e−s cos
(√

3s
)

b(s) = −4e−s +
√

3e−s sin
(√

3s
)

+ e−s cos
(√

3s
)

c(s) = e2s

f(s) = −2
√

3e s
2 sin

(√
3s
2

)
+ 2e s

2 cos
(√

3s
2

)

g(s) = 2e s
2 sin

(√
3s
2

)
+ 2

√
3e s

2 cos
(√

3s
2

)
h(s) = −e−s sin

(√
3s
)

+
√

3e−s cos
(√

3s
)

6.1.2

A logarithmic spiral whose osculating conic at s = 0 is c

The logarithmic spiral γ(s) =
(
es/2 cos

(√
3s
2

)
: es/2 sin

(√
3s
2

)
: e−s

)
has

u = −5x2 − 3y2 + z2 + 4xz + 4
√

3yz + 2
√

3xy as its osculating conic at s = 0.
If we wish to find a logarithmic spiral whose osculating conic at s = 0 is
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c = −x2 − y2 + z2, we have to find a projective transformation A ∈ PGL(3;R)
that takes u to c, since this implies that A.γ(s) is a suitable solution to the
problem. One such projective transformation is

A =



3
√

2
2 −

√
6

2 0
√

2
2

√
6

2 −2
√

2

0 0 3

 .

Indeed, the symmetric bilinear form associated to A.u is given by the
symmetric matrix (A−1)TMUA

−1, where

A−1 =



√
2

4

√
2

4
1
3

−
√

6
12

√
6

4

√
3

3

0 0 1
3

 , MU =


−5

√
3 2

√
3 −3 2

√
3

2 2
√

3 1

 .



√
2

4 −
√

6
12 0

√
2

4

√
6

4 0

1
3

√
3

3
1
3




−5

√
3 2

√
3 −3 2

√
3

2 2
√

3 1





√
2

4

√
2

4
1
3

−
√

6
12

√
6

4

√
3

3

0 0 1
3

 =


−1 0 0

0 −1 0

0 0 1

 .

(A−1)TMUA
−1 = MC .

Since MC is the symmetric matrix of the symmetric bilinear form associated to
c, we have that A.u = c. By applying the action of A on the projective plane,
we obtain a new logarithmic spiral A.γ(s), which is parametrized by:

A.γ(s) =
(
es/2

(
3
√

2
2 cos

(√
3s
2

)
−

√
6

2 sin
(√

3s
2

))
: es/2

(√
2

2 cos
(√

3s
2

)
+

√
6

2 sin
(√

3s
2

))
− 2

√
2e−s : 3e−s

)
.

In order to obtain the new coefficients of the generic osculating conic one has
to compute the same congruence by A−1, but with the matrix associated to
the respective conic. In the end of the process, we get the following coefficients:
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a(s) = 1
3e

−s
(
−2 − cos

(√
3s
))

b(s) = e−s
(
−2 + cos

(√
3s
))

c(s) = 1
9e

−s

(
−16 + e3s + 16e 3s

2 cos
(√

3s
2

)
+ 8 cos

(√
3s
))

f(s) = 2
√

6
9 e−s

(
−e

3s
2 sin

(√
3s
2

)
− sin

(√
3s
))

g(s) = 2
√

2
3 e−s

(
−2 + e

3s
2 cos

(√
3s
2

)
+ cos

(√
3s
))

h(s) = −
√

3
3 e−s sin

(√
3s
)

(6.1)

The projective transformation A ∈ PGL(3;R) presented in this section
accomplishes the goal of providing a logarithmic spiral with c as its osculating
conic at s = 0. However, is not the only choice available. There is actually a
3-dimensional family of suitable projective transformations, since any element
in Stab(c)A, the right coset of A with respect to the stabilizer of c, would also
serve the purpose.

Figure 6.3 below, for example, displays the conic R.A.γ(s) with some of its
osculating conics, where R stands for the rotation by π/4. We applied this
rotation in order to get a better illustration, in which R.A.γ(0) = (1 : 0 : 1).
Since R ∈ Stab(c) preserves the conic c, the osculating conic at s = 0 is still c.

Figure 6.3: Logarithmic spiral with several osculating conics around s = 0.
Notice the presence of c, highlighted in blue.
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6.1.3

The stabilizer of c

In this section we present and briefly describe the stabilizer of c, namely
Stab(c) = PO (2, 1) < PGL(3;R). In order for a projective transformation B to
preserve the conic c, it must satisfy the relation: BTMCB = MC . The group of
matrices that satisfy this condition is called the orthogonal group with respect
to the indefinite quadratic form x2 +y2 −z2 (or −x2 −y2 +z2 equivalently) and
is denoted by O(2, 1). The group of projective transformations that preserve
c is thus PO (2, 1), the quotient of O(2, 1) by {±I}, as these are the only
two scalar transformations in O(2, 1). Notice that, since we are dealing with
3 × 3 matrices, the determinant of −I is −1, so we can always take as the
representative of a class in PO (2, 1) a matrix with determinant equal to 1. In
other words, PO (2, 1) is isomorphic to SO(2, 1), the subgroup of O(2, 1) whose
elements all have determinant equal to 1.

The group SO(2, 1) has two connected components, which are isomorphic.
The one that contains the identity only has transformations that preserve the
orientation in both subspaces where the restriction of the quadratic form is
definite. The other one reverses the orientation of both such subspaces. For
example, the transformation

B =


1 0 0

0 −1 0

0 0 −1


reverses the orientation of the x, y subspace and also of the z subspace.
The isomorphism between the two connected components of SO(2, 1) can be
established via the product by this element B.

The connected component of the identity, denoted SO0(2, 1), is generated by
3 one-parameter groups, one of Euclidean rotations in the x, y plane, and two
of hyperbolic rotations, in the x, z plane and in the y, z plane.

R(θ) =


cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0

0 0 1

 ; Hx(τ) =


cosh(τ) 0 sinh(τ)

0 1 0

sinh(τ) 0 cosh(τ)

 ; Hy(ψ) =


1 0 0

0 cosh(ψ) sinh(ψ)

0 sinh(ψ) cosh(ψ)

 .
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6.2

Joining two harmonically nested conics with a logarithmic spiral

In this section, we state and then prove the main theorem of this chapter. It
provides a sufficient condition for there to exist a zero projective curvature
logarithmic spiral γ(s) that joins two conics.

Theorem 6.2.1. Let u and v be two distinct irreducible conics in RP2 without
a pair of complex double intersections. If u is harmonically nested with respect
to v, then there exists a zero projective curvature logarithmic spiral γ(s) such
that u is its osculating conic at s = 0 and some other conic of the pencil uv is
its osculating conic at some other value s0 > 0.

The proof of the theorem revolves around the K-invariant. In the following sub-
section, we prove a lemma about the function K : ]0,+∞[ → ]

√
30/72,

√
3/9[

that provides the K-invariant of the binary quartic φ (Γ(0),Γ(s)) originating
from a pair of osculating conics of a zero projective curvature logarithmic spi-
ral.

6.2.1

Algebraic invariants stemming from the logarithmic spiral

Let us prove that all but one class of binary quartics with K-invariant greater
than

√
30/72 may be obtained from the osculating conics of a zero projective

curvature logarithmic spiral.

Lemma 6.2.2. Let γ(s) be a zero projective curvature logarithmic spiral,
and let Γ(s) be the path of its osculating conics. Then the K-invariant of
φ (Γ(0),Γ(s)) attains every value in the open interval ]

√
30/72,

√
3/9[.

Proof. Let K(s) be the function whose output is the K-invariant of the binary
quartic φ (Γ(0),Γ(s)). Since K(s) is a continuous function, it is enough to show
that lims→0+ K(s) =

√
30/72 and lims→+∞ K(s) =

√
3/9.

For the infimum, we have proved in Theorem 5.4.1 that for any regular curve
with no inflection or sextactic point, the limiting value for the K-invariant as s
goes to 0 is

√
30/72. As for the supremum, let us observe what happens to the

osculating conics as s goes to +∞. Since the whole setting in invariant under
the PGL(3;R) action on RP2, we may consider a particular zero projective
curvature logarithmic spiral such as the one presented in 6.1.2. Notice that
for this curve, Γ(0) = c and that its osculating conics converge to the
degenerate conic Γ(+∞) = z2 as s goes to +∞. This limiting osculating
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conic has two double complex intersections with c in the line z = 0, at the
so called cyclic points (1 : i : 0) and (1 : −i : 0). By having a pair of
complex double intersections, the resulting quartic must be in the class of
t4 +2t2w2 +w4 = (t2 +w2)2, which has the maximum value for the K-invariant,
√

3/9. This proves that indeed lims→+∞ K(s) =
√

3/9.

Let us illustrate the matter by making use of (6.1), the concrete parametriza-
tion of the path of osculating conics of the logarithmic spiral mentioned in the
proof of the lemma. We employ Mathematica to compute the binary quartics
φ (c,Γ(s)) and their algebraic invariants. Here we fix the first osculating conic
c and let the second osculating conic Γ(s) evolve in terms of the parameter s
of the original curve. The figures below show the graphs of the functions J(s)
and K(s), which yield the values of the J and K invariants respectively.

0.0 0.5 1.0 1.5

0.5

1.0

1.5

2.0

J(s)

0 1 2 3 4 5

20000

40000

60000

80000

100000

J(s)

Figure 6.4: The graph of J(s) of a logarithmic spiral, with s ∈ [0, 1.5] on the
left and s ∈ [0, 5] on the right.

0 1 2 3 4 5

0.05

0.10

0.15

0.20

K(s)

Figure 6.5: The graph of K(s) of a logarithmic spiral with s ∈ [0, 5].

Mathematica confirms that lims→0+ J(s) = 32/27 and lims→0+ K(s) =
√

30/72.
Furthermore, it also validates that the limits when s goes to infinity are
lims→+∞ J(s) = +∞ and lims→+∞ K(s) =

√
3/9.

We have thus shown that the path of osculating conics of the zero projec-
tive curvature logarithmic spiral produces binary quartics whose K-invariant
may be any value in ]

√
30/72,

√
3/9[. The absence of the supremum

√
3/9

corresponds to the unique class of quartics that cannot be obtained from the
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osculating conics, and this explains the hypothesis that the conics u and v

cannot have a pair of complex double intersections.

We may also observe in the graphs in Figures 6.4 and 6.5 that both functions
J(s) and K(s) seem to be strictly increasing, which would imply that the
osculating conics of the logarithmic spiral are necessarily harmonically nested.
If that is the case, then we would have a stronger result: two irreducible
conics u and v with no complex double intersections may be joined by a
zero projective curvature logarithmic spiral if, and only if, u is harmonically
nested with respect to v. Unfortunately, we do not yet have a proof for this
fact. Actually, if we consider curves of constant negative projective curvature,
we know that K(s) cannot be injective since its power series begins with
K(s) =

√
30

72 + 3
√

30
2240 ks

2 +O(s3). We later examine the case of curves of constant
projective curvature, other than zero, some more in section 6.3.

6.2.2

Proof of the theorem

With the help of Lemma 6.2.2 above, let us prove Theorem 6.2.1.

Proof. Firstly, we observe that the claim is reasonable by dimension counting.
We have 8 degrees of freedom from the projective group and 1 extra from the
value of the parameter s, adding up to 9 degrees of freedom at our disposal. On
the other hand, the coefficients of the conics u and v impose us 10 equations,
but the liberty to take any other conic from the pencil uv relaxes the restriction
by 1 degree, which brings us down to 9 conditions to be met. Thus, we may
expect a discrete set of solutions to our problem.

Let K0 be the value of the K-invariant of the quartic φ(u, v). The hypothesis
that u is harmonically nested with respect to v means that K0 >

√
30/72,

and the fact that they do not have a pair of double intersections prevents K0

to be
√

3/9. We have shown in Lemma 6.2.2 that there is a zero projective
curvature logarithmic spiral γ0(s) that has c as its osculating conic at s = 0
and another conic v0 at a certain s = s0 such that the quartic φ(c, v0) has K0

as its K-invariant.

Next, we apply the simultaneous diagonalization, as presented in 5.1, to both
pairs u, v and c, v0. To be precise, let us denote by A ∈ PO (2, 1) the projective
transformation that performs the simultaneous diagonalization of c and v0.
After its action, we obtain A.c = c and A.v0 = v1, a new conic. A similar
process plays out for the other pair. Let us denote by B ∈ PGL(3;R) the
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projective transformation that does the simultaneous diagonalization of u and
v. In the end, we get B.u = c and B.v = v2, yet another conic. As explained
in Section 3.2, we have the following relations:

φ(c, v0) = φ(A.c, A.v0) = φ(c, v1) and φ(u, v) = φ(B.u,B.v) = φ(c, v2).

Since φ(c, v1) and φ(c, v2) both have the same K-invariant, the resulting
parameter λ ∈ ]

√
5−2
3 , 1

3 [ of both normal forms, as presented in 5.1, must
be the same, so both quartics belong to the same PGL(2,R) orbit. In other
words, φ(c, v1) = φ(c, v2). Under the very restricted setting of the simultaneous
diagonalization, this equality implies that v1 and v2 belong to the same pencil
through c.

To conclude, we just have to compose the appropriate actions. Consider the
zero projective curvature logarithmic spiral given by γ(s) = B−1.A.γ0(s).
Its osculating conic at s = 0 is B−1.A.c = u, and the one at s = s0 is
B−1.A.v0 = B−1.v1 = v3. Since the conic v1 belongs to the pencil cv2, then v3

belongs to the pencil B−1.cv2 = uv. This shows that γ(s) is a solution to the
problem, thus concluding the proof.

6.2.3

No three osculating conics on the same pencil

We conclude this section by showing that the osculating conics of a zero
projective curvature logarithmic spiral do not cross the same pencil of conics
more than twice.

Theorem 6.2.3. No pencil of conics contains more than two osculating conics
of a zero projective curvature logarithmic spiral.

Proof. Let us assume by contradiction that there exists such a zero projective
curvature logarithmic spiral with three osculating conics that belong to the
same pencil. First, up to a projective transformation, one may map the
logarithmic spiral to the particular form whose osculating conics have their
coefficients parametrized by (6.1). Also, as explained in the end of section 6.1,
up to another projective transformation it is possible to set one of the three
osculating conics at hand as the osculating conic at s = 0 specifically, so that
it becomes c.
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Now, the two other conics, let us denote them by v and w, must have their
coefficients given by the formulae above for some parameters sv and sw. Also,
since they are distinct and belong to the same pencil, there exists two non-zero
real parameters α and β such that w = αu+ βv. Therefore, the coefficients of
v and w are related by the following 6 equations:

aw = −α + βav

bw = −α + βbv

cw = α + βcv

fw = βfv

gw = βgv

hw = βhv

Beginning by the relation given by the coefficient h(s), we have that

e−sw sin(
√

3sw) = βe−sv sin(
√

3sv).

Here we have to consider two cases, whether sin(
√

3sv) = sin(
√

3sw) = 0 or
not. Let us treat first the case where the sines vanish, which means that

√
3sv

and
√

3sw belong to πZ. Subtracting the equation of the a(s) coefficient from
that of the b(s), we get:

e−sw

(
1 − cos(

√
3sw)

)
= βe−sv

(
1 − cos(

√
3sv)

)
.

Now there are again two cases to consider, whether cos(
√

3sv) = cos(
√

3sw) = 1
or −1. If they are both equal to −1, then β = esv−sw and we will get to a
contradiction quicker. Take now the relation given by the coefficient f(s).

e−sw

(
e

3sw
2 sin

(√
3sw

2

))
= βe−sv

(
e

3sv
2 sin

(√
3sv

2

))
.

In the case where
√

3sv and
√

3sw belong to π+ 2πZ, we have that β = esv−sw

and also sin
(√

3sv

2

)
and sin

(√
3sw

2

)
can only be ±1. In any case, we have a

contradiction since e 3sv
2 ̸= ±e 3sw

2 . On the other hand, if
√

3sv and
√

3sw belong
to 2πZ, then

√
3sv

2 and
√

3sw

2 belong to πZ and so the sines vanish and the
equation of f(s) is satisfied for any value of β.

Next, notice that b(s) gives us that α = e−sw − βe−sv . Substituting α in the
relation given by c(s) and joining with the equation of g(s), we discover the
necessary value of β. First, g(s) gives us:
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−e−sw + e
sw
2 cos

(√
3sw

2

)
= β

(
−e−sv + e

sv
2 cos

(√
3sv

2

))
.

While c(s) yields:

1
9e

−sw

(
−8 + e3sw + 16e 3sw

2 cos
(√

3sw

2

))
= α + β 1

9e
−sv

(
−8 + e3sv + 16e 3sv

2 cos
(√

3sv

2

))
⇐⇒

−e−sw + 1
9e

−sw

(
−8 + e3sw + 16e 3sw

2 cos
(√

3sw

2

))
= −βe−sv + β 1

9e
−sv

(
−8 + e3sv + 16e 3sv

2 cos
(√

3sv

2

))
⇐⇒

−17e−sw + e2sw + 16e sw
2 cos

(√
3sw

2

)
= β

(
−17e−sv + e2sv + 16e sv

2 cos
(√

3sv

2

))
.

Joining the equations provided by c(s) and g(s), we obtain:

−e−sw + e2sw = β
(
−e−sv + e2sv

)
⇐⇒ β = −e−sw + e2sw

−e−sv + e2sv
.

Finally, by substituting β back in the relation we have obtained due to g(s),
we find a curious relation between sv and sw.

−e−sw + e
sw
2 cos

(√
3sw

2

)
= −e−sw + e2sw

−e−sv + e2sv

(
−e−sv + e

sv
2 cos

(√
3sv

2

))
⇐⇒

−e−sw + e
sw
2 cos

(√
3sw

2

)
−e−sw + e2sw

=
−e−sv + e

sv
2 cos

(√
3sv

2

)
−e−sv + e2sv

⇐⇒

−e−3sw
2 + cos

(√
3sw

2

)
−e−3sw

2 + e
3sw

2
=

−e−3sv
2 + cos

(√
3sv

2

)
−e−3sv

2 + e
3sv

2
.

This equation implies that sv = sw, because if we substitute 3sv

2 by x and the
cosine in the expression by either 1 or −1, the only two values it may assume,
we get injective functions with disjoint ranges.

F (x) = −e−x + 1
−e−x + ex

= 1
1 + ex

, and G(x) = −e−x − 1
−e−x + ex

= 1
1 − ex

.
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Figure 6.6: Graphs of the functions F (x) and G(x).

Indeed, both functions above are injective, the range of F (x) is ]0, 1[, while
the range of G(x) is ] − ∞, 0[ ∪ ]1,+∞[. Therefore, the relation we have
obtained is true if and only if sv = sw, which concludes the case where
sin(

√
3sv) = sin(

√
3sw) = 0.

Now let us consider the other case, when those sines do not vanish. The
equation provided by the coefficient h(s) gives us already the value of β in
terms of sv and sw.

e−sw sin(
√

3sw) = βe−sv sin(
√

3sv) ⇐⇒ β = esv−sw
sin(

√
3sw)

sin(
√

3sv)
.

Then, replacing β in the relation provided by the difference of the equations
of a(s) and b(s) yields a nice trigonometric identity. Since tan

(
x
2

)
= 1−cos(x)

sin(x) ,
we have that

e−sw

(
1 − cos(

√
3sw)

)
= βe−sv

(
1 − cos(

√
3sv)

)
⇐⇒

csc(
√

3sw) − cot(
√

3sw) = csc(
√

3sv) − cot(
√

3sv)

⇐⇒

tan
(√

3sw

2

)
= tan

(√
3sv

2

)
.

Since
√

3sw

2 and
√

3sw

2 must have the same tangent, then
√

3sv

2 −
√

3sw

2 ∈ πZ and
hence

√
3sv −

√
3sw ∈ 2πZ. This in turn implies that sin(

√
3sv) = sin(

√
3sw),

and so β = esv−sw .

To conclude, we just have to substitute this β in the equation provided by the
coefficient b(s).
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e−sw

(
−2 + cos(

√
3sw)

)
= −α + βe−sv

(
−2 + cos(

√
3sv)

)
⇐⇒

e−sw

(
−2 + cos(

√
3sw)

)
= −α + e−sw

(
−2 + cos(

√
3sv)

)
.

Since cos(
√

3sv) = cos(
√

3sw), the equation above implies that α = 0, which
is a contradiction, since the 3 conics are supposed to be distinct.

6.3

Curves of constant projective curvature

For the sake of completeness and also in order to provide some more examples,
let us present and discuss the case of curves that have constant projective
curvature. As we have explained for the case where k ≡ 0 in Section 6.1, the
curve x(σ) of constant projective curvature k satisfies the following differential
equation when parametrized by the projective length:

x′′′(σ) + 2kx′(σ) + x(σ) = 0.

We find the parametrization of such a curve by solving the analogous ODE:
y′′′(x) + 2ky′(x) + y(x) = 0. Notice that there are three possible behaviours
depending on the value of k, because the discriminant of the characteristic
polynomial p(x) = x3 + 2kx + 1 is ∆ = −27 − 32k3. The critical value is
k = 3

√
−27/32 ≈ −0.945, as ∆ is positive if k < 3

√
−27/32, it vanishes if

k = 3
√

−27/32 and it is negative if k > 3
√

−27/32. In this last case, p(x) has a
single real root r and a pair of complex conjugate roots a+ ib and a− ib. Also,
since we know the coefficients of p(x), we have three equations involving these
roots:


(a+ ib) + (a− ib) + r = 0;

(a+ ib)(a− ib) + (a+ ib)r + (a− ib)r = 2k;

(a+ ib)(a− ib)r = −1.

From these equations, we may express all variables in terms of a, as:
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

r = −2a;

b =
√

1
2a − a2;

k = 1
4a − 2a2.

Since we are working in the case where k > 3
√

−27/32, the equation relating
k to a indicates that we must consider only 0 < a < 3

√
1/2 ≈ 0.794. The

square root in the relation between b and a also gives us the same restriction.
Therefore, for any given a in this interval, we have the generic solution of the
ODE:

y(x) = C1e
−2ax + C2e

ax cos
(√

1
2a

− a2 x
)

+ C3e
ax sin

(√
1

2a
− a2 x

)
, C1, C2, C3 ∈ R.

Again as in Section 6.1, if we set each term of the solution as one of the
coordinates of x(σ) we get a curve of constant projective curvature k = 1

4a
−2a2.

x(σ) =
eaσ cos

√ 1
2a − a2 σ

 : eaσ sin
√ 1

2a − a2 σ

 : e−2aσ

 .
As one may notice, these are also logarithmic spirals. The case where k = 0
corresponds to a = 1/2.
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Figure 6.7: Some curves of constant projective curvature. Their respective
values for (a, k) are: (0.1, 2.48), (0.4, 0.305) and (0.7,−0.622857)

With the parametrization in hand, we may use Mathematica once again to
compute the quadratic parametrizations and the implicit equations of the
osculating conics. Then, we generate the binary quartics and analyse their
algebraic invariants. As explained in Subsection 5.4.2, the power series of the
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J-invariant around zero is J(σ) = 32
27 + 8

189kσ
2+O(σ3), while for the K-invariant

we have K(σ) =
√

30
72 + 3

√
30

2240 kσ
2 +O(σ3). Therefore, if the projective curvature

is negative, then both of these invariants should attain values that are smaller
than their limiting values at zero. This is indeed what we observe in their
graphs.
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Figure 6.8: The graphs of J(σ) and K(σ) of a curve with constant projective
curvature k ≈ −0.6. There is considerable numerical instability around σ = 0.



A

Pencils of Conics

This appendix is a self-contained portion dedicated to an extensive study of the
space of pencils of conics, both in the complex and real settings. The projective
groups PGL(3;C) and PGL(3;R) act on the respective projective planes
via projective transformations, which map conics into conics. By linearity,
analogous actions are induced on the spaces of pencils of conics. We classify
and describe in detail the orbits of such actions and we also analyse the
stabilizer subgroups of a representative of each orbit that serve as normal form.
Moreover, we consider also the case of marked pencils of conics, where either
one or two conics of the pencil are highlighted. The basis of the classification
that we present in this appendix can be found in [Persson]. We explain it in
much further detail, provide figures and analyse the symmetries of each kind
of pencil of conics.

A.1

The complex and real spaces of conics and their pencils

A conic in CP2 is given implicitly by a homogeneous equation of degree 2
in the homogeneous variables x, y, z. It is thus determined by 6 complex
coefficients which cannot all vanish simultaneously. One may write it either
as a straightforward equation or in matrix form:

ax2 + by2 + cz2 + 2fxz + 2gyz + 2hxy = 0.

(
x y z

)
a h f

h b g

f g c



x

y

z

 = 0.

Since multiples of a given expression represent the same curve, the space
of conics is CP5, the complex projective space of dimension 5. We will call
an element of this space a real conic when it admits an expression whose
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coefficients are all real. The subset of all real conics is then a copy of RP5

embedded in CP5.

The projective linear group PGL(3;C) acts on the projective plane via projec-
tive transformations. The fundamental theorem of projective geometry states
that given two sets of four points of CP2 in general position, {P1, P2, P3, P4}
and {Q1, Q2, Q3, Q4}, there exists a unique element of PGL(3;C) that maps
Pi to Qi for every i ∈ {1, 2, 3, 4}. In other words, the images of four points
in general position fully determine a projective transformation. Moreover, this
action transforms the algebraic curves of the projective plane while preserv-
ing their degree, so one such map sends a conic into another conic, therefore
defining an action on the space of conics as well.

From the point of view of the implicit equations, the action of a projective
transformation M ∈ PGL(3;C) on a conic is best understood in the matrix
form. Let U be a symmetric matrix associated to a conic, then the new conic
obtained after the transformation M has been applied to the projective plane
is given by the congruent matrix (M−1)TUM−1. This action has only 3 orbits,
corresponding to the rank of the associated matrix: the irreducible conics
have full rank, the pairs of distinct lines have rank 2, and the double lines
have rank 1. Therefore, the determinant of the associated matrix is a very
important quantity, it is called the discriminant and is denoted by ∆. The
subset given by the expression ∆ = 0 is an algebraic submanifold Σ ⊂ CP5

given by a cubic expression and it is called the discriminant hypersurface.
Naturally, its complement is a dense open set which corresponds to the orbit
of irreducible conics. Inside of Σ itself there is a 2-dimensional submanifold Ω
which corresponds to the double lines; hence it is another orbit of the action,
the one of smallest dimension, while Σ\Ω is the 4-dimensional orbit of distinct
double lines.

The real case is similar, there is also a discriminant hypersurface Σ∩RP5 ⊂ CP5

with its singular submanifold Ω ∩ RP5 which divide the conics into the same
three major types. However, the action of the real projective linear group
PGL(3;R) on the space of conics actually has 5 distinct orbits. Algebraically,
this is due to Sylvester’s Law of Inertia, which states that the action we have
in hands preserves the signature of the symmetric matrices associated to the
conics. Since we are dealing with implicit equations up to non-zero multiples,
the signature of a conic is not well-defined, as a negative multiple interchanges
the positive and negative indices, but one may still categorize these classes of
equations into the following 5 types:
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Classification of real projective conics

Signature Normal form Type

(3, 0) or (0, 3) x2 + y2 + z2 = 0 Empty irreducible
(2, 1) or (1, 2) x2 + y2 − z2 = 0 Non-empty irreducible
(2, 0) or (0, 2) x2 + y2 = 0 Imaginary line-pair

(1, 1) x2 − y2 = 0 Real line-pair
(1, 0) or (0, 1) x2 = 0 Repeated line

As one can see, there are two kinds of irreducible conics, the non-empty ones,
which manifest themselves in the real projective plane RP2 as a real curve,
and the empty ones, that do not have a single point in RP2 as their associated
matrices are definite. Similarly, there are two types of distinct double lines
with real equations. They may either have two real factors and thus be made
of a pair of real lines, or they might be composed of two conjugate complex
factors, in which case it is a pair of imaginary lines that intersect at a single
point in RP2.

Given two points u and v in CP5, each corresponding to a conic, one may
consider the unique line that joins them, which may be parametrized by
αu + βv, where [α : β] ∈ CP1. This set corresponds to a particular family of
conics called a complex pencil of conics. Naturally, there is also the analogous
concept for the real case: if u, v ∈ RP5 are two distinct elements, then αu+βv

with [α : β] ∈ RP1 is a real pencil of conics. The aforementioned actions of
the corresponding projective linear groups map a pencil into another pencil,
in other words, they act on the space of lines of CP5 or RP5.

A complex line of CP5 corresponds to a plane of C6, so the space of complex
pencils of conics is the Grassmannian Gr(2;C6), while the space of real pencils
of conics is Gr(2;R6). The transformations of the projective plane by the
appropriate projective linear group give rise to actions on these spaces. The
main goal of this appendix is to classify and to describe in detail their orbits.
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Theorem A.1.1 (Classification of complex pencils of conics). The action of
PGL(3;C) on the space of complex pencils of conics has 8 orbits.

(1, 1, 1, 1) − dimension 8 (4) − dimension 5

(2, 1, 1) − dimension 7 (4∗) − dimension 4

(2, 2) − dimension 6 (∞, 1) − dimension 4

(3, 1) − dimension 6 (∞) − dimension 3

The names of the orbits will be explained as we describe them individually
along the proof. Since Gr(2;C6) is an 8-dimensional complex manifold, one
can see that this action admits one single generic orbit which is a dense open
set of the space of complex pencils. We also describe the analogous result for
the real setting.

Theorem A.1.2 (Classification of real pencils of conics). The action of
PGL(3;R) on the space of real pencils of conics has 13 orbits.

(1, 1, 1, 1) − dimension 8 (2, 2) − dimension 6 (4∗) − dimension 4

(1, 1, 1, 1) − dimension 8 (2, 2) − dimension 6 (4∗∗) − dimension 4

(1, 1, 1, 1) − dimension 8 (3, 1) − dimension 6 (∞, 1) − dimension 4

(2, 1, 1) − dimension 7 (4) − dimension 5 (∞) − dimension 3

(2, 1, 1) − dimension 7

The real orbits follow essentially the same division as the complex ones, but
some cases are further subdivided. The generic orbit, for example, becomes
three distinct classes. Every orbit is naturally a homogeneous space for the
projective linear group G = PGL(3; k), for k = C or R. One may choose
a particular representative ω ∈ Gr(2; k6) as the normal form for each orbit
and then look for its stabilizer subgroup Stab(ω). The resulting coset space
G/ Stab(ω) is homeomorphic to the orbit, and the sum of the dimensions of
the orbit and the stabilizer must always be equal to 8, the dimension of the
whole group due to the Orbit-Stabilizer Theorem. We shall pick a normal form
and present its stabilizer for every type of pencil, obtaining larger subgroups
as we pass through more degenerate cases.
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Another interesting class of objects that one could consider are the marked
pencils of conics, whose elements are pencils with a certain number of par-
ticular elements highlighted. Since any pencil is uniquely defined by a pair of
distinct conics {u, v} ⊂ kP5, we are going to investigate the actions of the
projective linear groups over the set of pencils marked with a single element
and the set of pencils marked with two distinct elements.

A.2

The complex space of conics

In order to prove the theorem about the classification of the complex pencils
of conics we describe firstly some fundamental aspects of the complex space
of conics and its pencils, then we shall present each orbit individually and
study them thoroughly. The space of conics itself is CP5 and a complex pencil
of conic is a straight line in this space, which admits thus the structure of
CP1. One possible way to determine such a pencil is to begin with two distinct
conics u, v ∈ CP5 and consider the unique line containing these two points.
In this case, we are going to call u and v the generating conics of the pencil
and we may parametrize it by αu + βv, where [α : β] ∈ CP1. Notice that if
one takes another pair of conics u′, v′ in this same line, one obtains the same
pencil, although it will be parametrized differently.

Bézout’s theorem tells us that any two distinct conics u, v with no common
factor always intersect in 4 points on CP2 counting their multiplicities properly.
Consequently, every element of a pencil must also pass through these same 4
common points, as they satisfy αu + βv = 0 for all [α : β] ∈ CP1. In the case
where they are all distinct and in general position, we have another practical
way of describing the pencil, it consists of all the conics which pass through
those 4 points. It is worth mentioning that this case already encompasses a
dense set among all possible pencils, with only the cases where at least three
of the common points are collinear or when at least two of them coincide.
But even in these situations, it is still possible to give geometric descriptions
that characterize the conics of the pencil, because one just has to specify the
contact between them in each of the common points, indicating, in particular,
the common tangent when the contact is of order greater than 1.

Coming back to the algebraic expression αu+βv of a pencil, we may investigate
its degenerate conics. These are easily spotted by their null discriminant
∆(αu + βv) = 0. As explained in Section A.1, the discriminant is the
determinant of the associated symmetric matrix and it vanishes if and only
if the conic is reducible. On top of that, one may also consider its first minors.
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If all of them vanish alongside ∆, then the matrix has rank 1 and thus the
conic is a double line.

By evaluating the discriminant ∆(αu + βv), we have in hand an expression
on the projective parameters [α : β]. Since it is given by the determinant of
a matrix in which every coefficient is either linear in α and β or null, the
discriminant must be either a homogeneous polynomial of degree 3 in these
variables or a constant ∆ = 0. This already shows us that a pencil is either
completely degenerate containing only pairs of lines, or it has at least one
and at most three degenerate conics. In addition, it can have at most two
double lines, which correspond to simultaneous roots of ∆ and the minors, all
homogeneous polynomials of degree 2 or identically null.

With regard to the action of PGL(3;C) via projective transformations, the
image of a pencil is determined by the images u′, v′ of the generating conics
u, v respectively. Indeed, for any M ∈ PGL(3;C) we have by linearity that it
maps an arbitrary element αu+ βv of the first pencil to the element αu′ + βv′

of the second pencil, so from the point of view of their CP1 structure and
considering the chosen parametrization, the map induced by M is simply the
identity.

Let us now suppose that M is an element of the stabilizer subgroup of the
pencil ω generated by u, v. In this case, how does M act on it? We have a first
fundamental lemma that answers this question.

Lemma A.2.1. Let ω be the complex pencil of conics generated by two distinct
conics u, v ∈ CP5.
Suppose that M ∈ Stab(ω) ⊂ PGL(3;C) is a projective transformation that
preserves the pencil ω. Then the action of M induces a projective transforma-
tion M ∈ PGL(2;C) on the CP1 structure of the pencil.

Proof. Given that M preserves the pencil, we know that the image of u must
stay on the same pencil, so we may write M.u = au+bv for some [a : b] ∈ CP1.
The same holds for v, M.v = cu + dv for some [c : d] ∈ CP1. Now, for an
arbitrary element of the pencil we have:

M.(αu+ βv) = γu+ δv, M.[α : β] = [γ : δ].



Appendix A. Pencils of Conics 123

To attain the result, we just have to apply the linearity of M .

M.(αu+βv) = αM.u+βM.v = α(au+bv)+β(cu+dv) = (αa+βc)u+(αb+βd)v.

We have thus obtained [γ : δ] as a linear combination of [α : β], in other words:

M =
a c

b d

 ∈ PGL(2;C), M.[α : β] = [γ : δ].

It will be very useful to bare in mind the fact that an element of the stabilizer
subgroup of a pencil acts on it as a projective transformation. This implies, for
example, that this action is completely determined by the image of 3 distinct
elements.

Under the action of any element of PGL(3;C), the configuration of the common
points is preserved, so it may be used to classify and name the 8 different
orbits. In the following section we present every class, we find to each of them
a normal form and its stabilizer subgroup and we further categorize the orbits
of marked pencils starting from the generic orbit and moving progressively
through increasingly degenerate cases.

A.3

Classification of complex pencils of conics

A.3.1

Complex (1, 1, 1, 1) Pencil

We begin by the case where the four common points are distinct and in general
position. If we vary slightly their locations we still obtain the same type of
configuration, thus this is a generic case, and we will soon see that this is the
only generic type of complex pencil. Since every pair of conics in this pencil
presents the same four simple intersections, we are going to name it (1, 1, 1, 1).
By taking the action of an element of PGL(3;C), we may take these four points
anywhere we want in CP2, as long as they stay in general position. Therefore,
the family of (1, 1, 1, 1) pencils is a single orbit.

With regard to the dimension, since it is necessary to determine the position
of four points in CP2, the set of pencils of the type (1, 1, 1, 1) constitutes a
manifold of complex dimension 8. The space of all complex pencils of conics is
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the set of lines of CP5, which is also of dimension 8 because a line is determined
by two points, but if one moves these points along the line, they still generate
the same one; so we have 5 + 5 − 2 = 8. It is natural that the submanifold of
(1, 1, 1, 1) pencils has the same dimension since it is a dense open set of the
manifold of all lines of CP5.

In order to identify the degenerate conics that belong to this type of pencil,
one just has to divide the common points into two pairs; each pair gives rise
to a line, thus forming a pair of lines. Since one can do so in three different
ways, there are three pairs of lines in the pencil, hence this is a case where the
discriminant has three distinct roots.

Normal form of the (1, 1, 1, 1) pencil

For the normal form, let us fix the common points as P1 = [1 : 0 : 1],
P2 = [0 : 1 : 1], P3 = [−1 : 0 : 1] and P4 = [0 : −1 : 1]. By doing so,
the degenerate conics of the pencil are determined and may be given by the
following expressions:

w∞ = 1
2(−x+ y + z)(x− y + z) = −1

2x
2 + xy − 1

2y
2 + 1

2z
2,

w0 = 1
2(x+ y + z)(x+ y − z) = 1

2x
2 + xy + 1

2y
2 − 1

2z
2,

w1 = w∞ + w0 = 2xy.

We may use these particular elements of the pencil to parametrize it. If we
consider αw∞ + βw0 with [α : β] ∈ CP1, then the degenerate conics are given
by the coordinates [1 : 0], [0 : 1] and [1 : 1].

Lemma A.3.1. The stabilizer subgroup of the normal form of the (1, 1, 1, 1)
pencil is isomorphic to the symmetric group S4.

Proof. This stabilizer must be isomorphic to S4 because the only projective
transformations that preserve the normal form are those that permute the four
common points.



Appendix A. Pencils of Conics 125

Marked (1, 1, 1, 1) pencil

Proposition A.3.2. There are two kinds of orbits of (1, 1, 1, 1) pencils marked
with a single conic:

i. The marked conic is irreducible:
Infinitely many orbits of dimension 8 described by an invariant;

ii. The marked conic is degenerate:
A single orbit of dimension 8.

In addition, there are three kinds of orbits of (1, 1, 1, 1) pencils marked with
an unordered pair of conics.

i. Both conics are irreducible:
Infinitely many orbits of dimension 8 described by a pair of invariants;

ii. A single conic is degenerate:
Infinitely many orbits of dimension 8 described by an invariant;

iii. Both conics are degenerate:
A single orbit of dimension 8.

Proof. Consider a pair of irreducible conics u and v in a (1, 1, 1, 1) pencil. When
transforming the pencil in order to obtain the normal form, the generating
conics u and v are sent naturally to two conics in the new pencil. The only
flexibility that one still has in the choice of the new conics for u and v comes
from the symmetries of the pencil resulting from the permutations of the
common points. Some of these transformations act as the identity over the
entire pencil preserving every element, while others act non trivially. The
action induced on the pencil is entirely determined by the image of the three
degenerate conics which are permuted following the common points. Let us
describe them by the pair of common points that generate each of their lines.

w∞ = P1P4, P2P3,

w0 = P1P2, P3P4,

w1 = P1P3, P2P4.

The transformations whose action on the pencil are trivial are those that
preserve all three degenerate conics. One can verify that these are the double
transpositions, which constitute a subgroup of order 4 isomorphic to Z2 × Z2,
as the dihedral group D2 and the Klein four-group K4.

K4 = {(), (1, 4)(2, 3), (1, 2)(3, 4), (1, 3)(2, 4)}.
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Therefore, a marked (1, 1, 1, 1) pencil admits up to 24/4 = 6 normal forms in
the same orbit, although this number may be even lower if the marked conics
are also preserved by some of these permutations, in order words, a marked
(1, 1, 1, 1) pencil may have itself a non-trivial stabilizer. This fact has a natural
connexion to the symmetries of the cross-ratio, which can also assume up to 6
different values by permuting the four points that define it. Indeed, the pencil
generated by u and v has the structure of a projective line CP1 and once
an order is chosen for the degenerate elements, each conic has well-defined
coordinates [α : β] ∈ CP1 that correspond to their cross-ratio with respect
to those three special elements. This explains the classification of the marked
(1, 1, 1, 1) pencils.

Finally, we present a figure in the hope of illustrating this kind of pencil. Of
course, we are unfortunately limited by the real picture, so every figure we
display is just a portion of the complex pencil showing in fact a real pencil of
conics contained in it. Here the pencil is parametrized by αw∞ +βw0 with the
following conics highlighted:

Conic Expression Pencil’s coordinates

w∞ −1
2x

2 +xy− 1
2y

2 + 1
2z

2 [1 : 0]
w0

1
2x

2 + xy + 1
2y

2 − 1
2z

2 [0 : 1]
w1 2xy [1 : 1]
u x2 + y2 − z2 [−1 : 1]
v −x2 + 4xy − y2 + z2 [3 : 1]

Figure A.1: Normal form of the (1, 1, 1, 1) pencil.
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A.3.2

Complex (2, 1, 1) Pencil

The second case happens if exactly two of the common points coincide, say
at P . Let us call Q and Q′ the other common points. In order to have a well-
defined pencil, one has also to specify a line through P , which is going to
be a common tangent to every nondegenerate conic of the pencil. If we want
to avoid even more degenerate cases, it is also necessary to prohibit that the
points Q and Q′ belong to the common tangent and that P belongs to the
line QQ′. This characterizes the pencil of type (2, 1, 1). Through the action of
an element of PGL(3;C) we have full control on the location of the common
points and of the common tangent, so this constitutes a single orbit.

The liberty to determine the position of three points in CP2 plus a line through
one of them constitutes a manifold of complex dimension 7. Therefore, we have
a submanifold of codimension 1 in the space of all pencils.

There are only two pairs of lines in a pencil of type (2, 1, 1). Let u be a
irreducible conic of the pencil. For a pair of lines to have a contact with u

of order 2 in P , the first possibility is that one of the lines is tangent to u

at that point, and then the other line must be QQ′. The second possibility is
to consider the pair PQ,PQ′. Thus the expression of the discriminant of this
pencil has two distinct roots. Naturally, one of them must be a simple root,
while the other is a double root. The multiple root is related to the pair of line
that intersect at P . This can be verified by considering this pencil as a limit
case of generic pencils.

Normal form of the (2, 1, 1) pencil

Let us define the normal form of this orbit. One can find a projective trans-
formation that sends the common points to P = [0 : −1 : 1], Q = [−1 : 0 : 1],
Q′ = [1 : 0 : 1] and so that the common tangent through P is given by y+z = 0.
In this case, the degenerate conics of the pencil are:

w∞ = (x−y−z)(x+y+z) = x2−y2−2yz−z2, w0 = 2y(y+z) = 2y2+2yz.

This allows us once again to parametrize the pencil by αw∞ + βw0, where
[α : β] ∈ CP1. Since (2, 1, 1) is an orbit of codimension 1, we expect to find a
stabilizer of dimension 1 as well. This greater flexibility can be thought in terms
of the action induced on the CP1 structure of the pencil. A transformation of
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the stabilizer fixes the two degenerate conics, hence determining the position of
two points, but a projective transformation on CP1 is only uniquely determined
by the image of three elements. The freedom to choose the image of the third
conic in the pencil manifests the continuous nature of the stabilizer. In other
words, as a consequence of having just two degenerate conics, this kind of
pencil has a larger set of symmetries in comparison to the generic case, instead
of a finite set there is in fact a 1-parameter family of transformations that
preserve the pencil.

Lemma A.3.3. The stabilizer subgroup of the normal form of the (2, 1, 1)
pencil is generated by the 1-parameter family of transformations Mt, with
t ∈ C∗, and the involution N below.

Mt =


t 0 0
0 1 0
0 t− 1 t

 , N =


−1 0 0
0 1 0
0 0 1

 .

Proof. Firstly, let us consider the permutations of the common points. Since
P plays a different role of the remaining common points, it must be preserved
by all symmetries, but we may permute Q and Q′, which is precisely what the
reflection N : [x : y : z] 7→ [−x : y : z] does. Furthermore, in order to preserve
the pencil one should pay attention to the common tangent through P , which
must also be preserved to safeguard the normal form. So if one considers an
auxiliary point P ′ = [1 : −1 : 1] on this line, any symmetry of the pencil must
keep it on the same line while avoiding coinciding with P and the collinearity
with Q and Q′. From the liberty to choose this image, we obtain the one-
parameter family of symmetries.

P
Mt7−→ P, P ′ Mt7−→ [t : −1 : 1] with t ∈ C∗,

Q
Mt7−→ Q, Q′ Mt7−→ Q′.

We draw attention to the fact that, differently from the generic case, every
transformation of the stabilizer subgroup preserves w∞ and w0 individually, so
there can be no permutation of the two. There is a simple geometric reason
for this behaviour; since w0 is tangent to every irreducible conic of the pencil
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at P , while w∞ has two components that meet at this point, no projective
transformation could interchange them because these properties are preserved.

Marked (2, 1, 1) pencil

Let us now analyse how these transformations act on the degenerate conics at
the level of their implicit equations. We recall that if one considers the matrix
U associated to a conic, then its image under the action of a transformation
M ∈ PGL(3;R) is given by the congruent matrix (M−1)TUM−1. Via a
straightforward calculation we obtain:

Mt.w∞ = 1
t2
w∞, Mt.w0 = 1

t
w0,

N.w∞ = w∞, N.w0 = w0.

This confirms algebraically that the stabilizer subgroup does not permute w∞

and w0. On top of that, it allows us to understand how these transformations
act on an arbitrary element of the pencil thanks to linearity.

Mt.(αw∞ + βw0) = α

t2
w∞ + β

t
w0,

N.(αw∞ + βw0) = αw∞ + βw0.

As one can see, the element of coordinates [α : β] ∈ CP1 of the pencil is sent
to the element of coordinates [α : tβ] by the transformation Mt, while the
transformation N acts trivially on the pencil, preserving every conic. Thus
one can find a particular value of t for which the transformation Mt sends a
marked irreducible conic u to the conic of coordinates [1 : 1] of the pencil,
that is u = w∞ + w0 = x2 + y2 − z2. However, one does not have any further
liberty to control the image of a second marked conic v, after all, there are
already three particular elements of the pencil determined, namely u and the
degenerate conics w∞, w0. Again, since each of these have distinct geometric
characteristics, they cannot be interchanged. With the image of u fixed, there
are only two symmetries left, the identity M1 = Id and the reflection N , both
acting trivially on the pencil. Let us summarize what we have found for the
orbits of marked (2, 1, 1) pencils.



Appendix A. Pencils of Conics 130

Proposition A.3.4. There are three orbits of (2, 1, 1) pencils marked with a
single conic.

i. The marked conic is irreducible:
A single orbit of dimension 8;

ii. The conic is degenerate and contains the common tangent:
A single orbit of dimension 7;

iii. The conic is degenerate and does not contain the common tangent:
A single orbit of dimension 7.

In addition, there are four types of orbits of (2, 1, 1) pencils marked with an
unordered pair of conics.

i. Both marked conics are irreducible:
Infinitely many orbits of dimension 8, described by an invariant;

ii. One is irreducible, the other is degenerate and contains the common
tangent:
A single orbit of dimension 8;

iii. One is irreducible, the other is degenerate and does not contain the
common tangent:
A single orbit of dimension 8;

iv. Both marked conics are degenerate:
A single orbit of dimension 7.

Proof. Given one such pencil, we may put it in the normal form and study
where can the marked conics be. If there is a single marked conic, then it must
become w0 or w∞, then nothing can be done and these orbits have < N,Mt >

as their stabilizers, being two distinct orbits of dimension 7. On the other hand,
if the marked conic is irreducible, then we have the freedom to move it along the
pencil and define a normal form where it becomes u = w∞ +w0 = x2 +y2 −z2,
in which case the stabilizer is just {Id, N}, and the orbit has dimension 8.

If there are two marked conics and one of them is degenerate, we fall
back to the cases described in the last paragraph. If both marked con-
ics are irreducible, then we can take one of them to the normal form, say
u = w∞ + w0 = x2 + y2 − z2. By doing so, this conic corresponds to the coor-
dinates [1 : 1] of the pencil, while the other marked conic v is associated to
the coordinates [c : 1] for some c ∈ C \ {0, 1}. Since we are considering it as an
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unordered pair, we could also switch roles by taking a projective transforma-
tion of the stabilizer of the unmarked pencil that sends v to [1 : 1]. Since this
transformation must preserve the degenerate conics w∞ and w0, its action on
the CP1 structure of the pencil is given simply by [a : b] 7→ [a/c : b] and hence
it maps u to [1/c : 1].

Therefore, each orbit of this kind could admit two possible normal forms in
such a way that we may impose that one of the marked conics lies at [1 : 1]
and the other at [c : 1] with |c| ≤ 1 and c ̸= 0. Notice that at the border of
the disc we must exclude c = 1 and identify conjugate points because they
correspond to the same orbit. In particular, this shows us that the orbit given
by c = −1 is somewhat special. We can say that this values c is a projective
invariant of two irreducible conics that intersect in the (2, 1, 1) configuration,
it characterizes the orbit that their marked pencil belongs to and it may be
obtained by putting them in the normal form. This concludes the description
of the fundamental domain of the action of PGL(3;C) on the space of (2, 1, 1)
pencils marked with two elements.

In the figure below, we highlight u = x2 +y2 −z2, associated to the coordinates
[1 : 1] and v = x2 − yz − z2, associated to the coordinates [1 : 1/2].

Figure A.2: Normal form of the (2, 1, 1) pencil.
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A.3.3

Complex (2, 2) Pencil

In this case, the common points coincide in two pairs, in other words, every
pair of conics of the pencil has two intersections of order 2, at P and Q. In order
to uniquely determine the pencil, one must once again indicate the common
tangent through each of the common points and those lines must not intersect
at P or Q, otherwise we would have an even more degenerate case. Again,
through the action of PGL(3;C) we have full control on the location of the
common points and their common tangents, so we have indeed a single orbit.

The choice of two points in CP2 and a line through each one describes a
manifold of complex dimension 6, so this is a case of codimension 2.

One can point out two and only two pairs of lines that belong to a pencil
of type (2, 2). The first is comprised of the common tangent lines, while the
second is the double line PQ, so the discriminant has two distinct roots. By
analysing it as a limit case of generic configurations, one may conclude that
the double line is associated to the double root of the discriminant.

Normal form of the (2, 2) pencil

One can find a projective transformation that sends the common points to
P = [0 : −1 : 1] and Q = [0 : 1 : 1] while the common tangents become
y + z = 0 and y − z = 0 respectively. In this case, the degenerate conics are
given by:

w∞ = x2, w0 = (y + z)(y − z) = y2 − z2.

We parametrize naturally the pencil by αw∞ + βw0, where [α : β] ∈ CP1.
Once again, a projective transformation that brings the common points and
tangents to the normal form is not uniquely determined, which means that we
have a group of symmetries to study. This time it is even larger, as it contains
a two-parameters family of transformations.

Lemma A.3.5. The stabilizer subgroup of the normal form of the (2, 2) pencil
is generated by the 2-parameter family of transformations Mt,s, with t, s ∈ C∗,
and the involution N below.
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Mt,s =


ts 0 0

0 t+s
2

t−s
2

0 t−s
2

t+s
2

 , N =


1 0 0
0 −1 0
0 0 1

 .

Proof. Firstly, since P and Q play a similar role in this pencil being both points
of contact of order 2, they may be permuted carrying their common tangent
with them, which can be done by the reflection N : [x : y : z] 7→ [x : −y : z].
On top of that, we look for the symmetries that preserve P , Q and the
common tangents. With the help of two auxiliary points P ′ = [1 : −1 : 1]
and Q′ = [1 : 1 : 1], each one belonging to one of the common tangents, and
their respective images [t : −1 : 1] and [s : 1 : 1], with s, t ∈ C∗ we uniquely
determine the projective transformation Mt,s, as presented above. Notice that
we deny points on the line at infinity in order to avoid the collinearity of three
of these points.

P
Mt,s7−−→ P, P ′ Mt,s7−−→ [t : −1 : 1] with t ∈ C∗,

Q
Mt,s7−−→ Q, Q′ Mt,s7−−→ [s : −1 : 1] with s ∈ C∗.

Marked (2, 2) pencil

In order to classify the orbits of the marked (2, 2) pencils we should verify how
the transformations of the stabilizer act on the degenerate conics.

Mt,s.w∞ = 1
t2s2 w∞, Mt,s.w0 = 1

ts
w0,

N.w∞ = w∞, N.w0 = w0.

This actions allow us to choose freely the image of a marked irreducible conic,
so we fix u = w∞ + w0 = x2 + y2 − z2. With three conics settled, we do not
have any liberty left to control the image of another marked conic v.

Proposition A.3.6. There are three orbits of (2, 2) pencils marked with a single
element.
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i. The marked conic is irreducible:
A single orbit of dimension 7;

ii. The marked conic is the pair of common tangents:
A single orbit of dimension 6;

iii. The marked conic is the double line:
A single orbit of dimension 6.

In addition, there are four types of orbits of (2, 2) pencils marked with an
unordered pair of conics.

i. Both marked conics are irreducible:
Infinitely many orbits of dimension 7 described by an invariant;

ii. One is irreducible and the other is a double line:
A single orbit of dimension 7;

iii. One is irreducible and the other is the pair of common tangents:
A single orbit of dimension 7;

iv. Both marked conics are degenerate:
A single orbit of dimension 6.

Proof. If u is a degenerate conic, then it must be either u = w0 or u = w∞ in
the normal form, therefore every transformation of the subgroup < N,Mt,s >

preserves u and so this is the stabilizer of the marked pencil, implying that
those are two 6-dimensional orbits. However, if u is irreducible, then we may
define a normal form where u = w∞ + w0 = x2 + y2 − z2, so it is associated
to the coordinates [1 : 1] of the pencil. By construction, any transformation
Mt,s preserves the degenerate conics, so we just have to check its action on the
conic u.

Mt,s.u = Mt,s.(w∞ + w0) = 1
t2s2 w∞ + 1

ts
w0.

Notice that the transformation Mt,s maps [1 : 1] to [1 : ts]. The image of three
elements fully determine the action on the pencil, thus if ts = 1, then the
symmetry Mt,s acts trivially on the pencil, preserving every conic. With that,
we have shown that the (2, 2) pencil has a one-parameter group of symmetries
that preserve it globally. In other words, the stabilizer subgroup of this marked
pencil is the one-dimensional group < N,Mt,1/t >. This fact implies that the
PGL(3;C) orbit of marked (2, 2) pencils where the marked conic is irreducible
has dimension 7.
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Let us now move to pencils with two marked conics. The cases where at least
one of them is degenerate correspond to the the orbits with a single marked
conic explained above. If both are irreducible, we can take one of them to
u = w∞ +w0 = x2 + y2 − z2. As we have seen, the stabilizer of the pencil that
also preserves u is < N,Mt,1/t >, a 1-dimensional group that acts trivially on
the whole pencil since it preserves three of its conics, namely w0, w∞ and u.
Therefore, the position of the other conic v is set, the only freedom coming
from the fact that the pair {u, v} is unordered.

Indeed, we may do the same manipulation as in the proof of Proposition
A.3.4 and establish that the coordinates of v in the pencil are [c : 1] for
some c ∈ C \ {0, 1} with |c| ≤ 1 and the same identifications hold. We can
say that this value c is a projective invariant of two irreducible conics that
intersect in the (2, 2) configuration, it characterizes the orbit that their marked
pencil belongs to and it may be obtained by putting them in the normal
form. Since the stabilizer has dimension 1, the orbit of the marked pencil must
have dimension 7. This concludes the description of the fundamental domain
of the action of PGL(3;C) on the space of (2, 2) pencils marked with two
elements.

For the first time, we have a continuous group of symmetries that preserve the
entire pencil, that is, there exists a continuum of projective transformations
that preserve the three particular conics w∞, w0 and u, and hence every single
conic in the pencil. In the following figure we highlight u = x2 + y2 − z2 and
an arbitrary conic v = 1

2w∞ + w0 = 1
2x

2 + y2 − z2.

Figure A.3: Normal form of the (2, 2) pencil.
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A.3.4

Complex (3, 1) Pencil

If three of the common points coincide at P and the fourth one is a distinct
point Q, then the conics of the pencil have a contact of order 3 at P and
order 1 at Q. In order to uniquely determine the pencil it is necessary to
specify the common tangent at P , which must not contain Q. However, this
is not enough, one must give more information about the contact at P . This
information may be obtained by analysing the local development of the curves
in a neighbourhood of the point.

Let u(x, y, z) and v(x, y, z) be two conics that intersect at P = [a : b : c] ∈ CP2.
For us to study their contact at this point, we should firstly consider an
appropriate affine chart. Suppose without loss of generality that the coordinate
c is not zero, so P = [ a/c : b/c : 1]. By taking a translation we can make the
intersection happen at P ′ = [0 : 0 : 1]. Now the expressions of the conics are
given by u(x+ a/c, y+ b/c, z) and v(x+ a/c, y+ b/c, z). Next, we consider the
affine chart given by z = 1, which provides us the equations of our conics in
terms of (x, y). Finally, for each curve we can give one of the coordinates as
a function of the other in order to locally satisfy their implicit equations. As
long as the tangent at (0, 0) is not vertical, we can take y as a function of x.
One may apply a rotation at this step if necessary. Then, to rate the contact
between the curves we just have to calculate the successive derivatives of these
functions and assess up to which order they coincide.

In order to better understand this analysis, we should work out a concrete
example. We are going to study the contact of two conics of a (3, 1) pencil,
but we must first know how to generate such a pencil. In terms of degenerate
conics, one may identify only one pair of lines that has the appropriate contact
with the other conics of the pencil at P and Q. Let u be a irreducible conic
of the pencil. We notice that one of the lines has to be the tangent to u at P ,
while the second one must be the line PQ. Therefore, this is a first case where
the discriminant has a unique root of order 3.

Now we may study a concrete example. Consider the conic
u = x2 + (y − z)2 − z2 = x2 + y2 − 2yz and let P = [0 : 0 : 1] be the triple
common point. The (3, 1) pencil would be determined if we fix the other
common point Q on u, but we may equivalently impose that the degenerate
conic va = y(x+ay), where a ∈ C, is the other conic that generates the pencil.
Notice that one of the lines is tangent to u at P , and the other passes through
P and will intersect u in another point which is thus the simple common
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point. In this way, we have the family of all type (3, 1) pencils that contain
u and whose triple common point is P . An arbitrary conic of this family is
given by w = αu + βva, where [α : β] ∈ CP1. Let us begin by analysing the
function y(x) associated to the conic u at a neighbourhood of (0, 0) by taking
its derivatives.

u(x, y) =x2 + y2 − 2y.

x2 + y2 − 2y = 0, y(0) = 0;

2x+ 2yy′ − 2y′ = 0 =⇒ y′(0) = 0;

2 + 2
(
(y′)2 + yy′′

)
− 2y′′ = 0 =⇒ y′′(0) = 1;

2(3y′y′′ + yy′′′) − 2y′′′ = 0 =⇒ y′′′(0) = 0.

Next, we do the same for an arbitrary conic of the family we described above.
The local parametrization is only relevant for the nondegenerate conics, so we
suppose that α ̸= 0.

w = αu+ βva,

w(x, y) = αx2 + βxy + (α + βa)y2 − 2αy.

αx2 + βxy + (α + βa)y2 − 2αy = 0, y(0) = 0;

2αx+ β(y + xy′) + 2(α + βa)yy′ − 2αy′ = 0 =⇒ y′(0) = 0;

2α + β(2y′ + xy′′) + 2(α + βa)
(
(y′)2 + yy′′

)
− 2αy′′ = 0 =⇒ y′′(0) = 1;

β(3y′′ + xy′′′) + 2(α + βa)
(
3y′y′′ + yy′′′

)
− 2αy′′′ = 0 =⇒ y′′′(0) = 3β

2α.

As one can see, any nondegenerate conic w of this family has a contact of order
at least 3 with u at P because the derivatives at x = 0 of their functions y(x)
coincide up to the second order. However, the third derivative is different for
each conic of the pencil, depending on the projective parameter [α : β] which
describes the pencil. Therefore, the contact at P is exactly 3.

After this detailed reflection about the contact between curves, we may finally
obtain the dimension of the submanifold of pencils of type (3, 1). One such
pencil is given by the position of two points P and Q in CP2, by the direction
of the common tangent at P and by a value k ∈ C∗ referring to the contact of
order 3 at P . This is the common value of y′′(0) obtained in the analysis above
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and it is related to the common euclidean curvature of the curves in the given
affine chart, so it must be non zero for there to be irreducible conics in the
pencil. In this way, we have a manifold of complex dimension 2+2+1+1 = 6,
thus once again of codimension 2 in the space of all pencils.

Normal form of the (3, 1) pencil

Let us present a normal form for the (3, 1) pencil. We may take the common
point of order 3 to P = [0 : −1 : 1] and the common point of order 1 to
Q = [0 : 1 : 1]. We may also impose that the common tangent at P is the line
y + z = 0 and that the curvature at P is k = 1, so that the pencil may be
generated by the following conics:

w∞ = x(y + z) = xy + xz, u = x2 + y2 − z2.

We parametrize the pencil by αw∞ + βu, where [α : β] ∈ CP1. A property
that characterizes each conic of this normal form is the tangent line at the
point Q. Indeed, consider the conic v of coordinates [α : 1], in other words,
v = αw∞ + u = x2 + y2 − z2 + αxy + αxz. Its tangent line at Q is given by
αx+ y − z = 0, so for each conic of the pencil has a different tangent at that
point.

We highlight that one must be careful, since only w∞ is intrinsically special in
this pencil. There are projective transformations that preserve the pencil as a
whole and that sends u to another irreducible conic of the pencil, so the choice
of u to define the parametrization of the pencil is arbitrary. The stabilizer of
the (3, 1) pencil is harder to describe, so we do it via another approach.

Lemma A.3.7. The stabilizer subgroup of the normal form of the (3, 1) pencil
is 2-dimensional, and each of its elements may be written in the form Mt.Ys,
with t ∈ C and s ∈ C∗, where:

Mt =


1 0 0

−t 1 0

t 0 1

 , Ys =


2s 0 0

0 s2 + 1 s2 − 1

0 s2 − 1 s2 + 1

 .

Proof. In order to find the stabilizer of the normal form of the (3, 1) pencil,
we take four points in general position: P = [0 : −1 : 1], Q = [0 : 1 : 1],
P ′ = [1 : 0 : 0] and Q′ = [1 : 0 : 1]. The transformations Ys all have three
fixed points, namely P , Q and P ′. Moreover, they preserve the conic u and
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have the role of moving the point Q′ to another point of u of coordinates
[2s : s2 − 1 : s2 + 1]. Notice that we avoid 0 and ∞ as values for s because
these values would map Q′ to P and Q respectively.

The transformation Mt is also defined by the images of the same four points.

P
Mt7−→ P, P ′ Mt7−→ [1 : −t : t],

Q
Mt7−→ Q, Q′ Mt7−→ [1 : −t : t+ 1].

Geometrically, consider the tangents of u at P and Q. They intersect precisely
at P ′, so after the action of Mt, we get a new conic that passes through P

and Q, whose tangent at P is still the line y + z = 0, since the image of P ′

persists in that line, but with a new tangent at Q determined by the image
of P ′. By the considerations presented thus far, the image of u must already
be a conic that has a contact of order 3 at P , that passes through Q and that
has the appropriate tangents at those points. However, it might not belong
to the pencil in normal form, because the curvature at P might not have
been preserved by the transformation. In order to assure that k = 1, we must
consider the image of the remaining point Q′.

As Q′ belongs to u, its image [1 : −t : t + 1] belongs to the image of u and
it is the last information needed to determine it uniquely, as the projective
transformation Mt is fully defined by the image of 4 points. Since we already
have that Mt.u is an irreducible conic that is tangent to the line through
Mt.P

′ and P at P and to the line through Mt.P
′ and Q at Q, then it is

completely determined by the location of a last point that it passes through,
which we control via Mt.Q

′. That is indeed the case because given two lines,
one point in each line and a third point outside of both lines, then there exists
a unique conic that passes through those three points and that is tangent to
both lines in the prescribed points. We search for the location of Mt.Q

′ on the
line x − y − z = 0, because as P belongs to this line, any irreducible conic
intersect it at another single point. Therefore, we just have to find out through
which other point of that line the conic of the (3, 1) pencil in normal form that
has the prescribed tangent at Q passes. Here, it is the algebraic description
of such conic that will lead us to the answer. One may verify that the conic
v = 2tw∞ + u = 2tx(y + z) + x2 + y2 − z2 has for its tangent at Q the line
2tx + y − z = 0, which passes through the point Mt.P

′ = [1 : −t, t]. The
intersections of v with the line x− y− z = 0 are P and [1 : −t : t+ 1], which is
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why it must be the image of Q′ in order to assure that the curvature of Mt.u

at P satisfies k = 1.

Marked (3, 1) pencil

Since there is a single degenerate conic in a (3, 1) pencil, we have more freedom
to pick the position of a couple of irreducible marked conics. This is not
surprising, because the symmetries act as projective transformations on the
CP1 structure of the pencil, so their actions are determined by the image of
three elements.

Proposition A.3.8. There are two orbits of (3, 1) pencils marked with a single
element:

i. The marked conic is irreducible: A single orbit of dimension 7;

ii. The marked conic is degenerate: A single orbit of dimension 6.

In addition, there are two orbits of (3, 1) pencils marked with an unordered
pair of conics.

i. Both marked conics are irreducible: A single orbit of dimension 8;

ii. One of the marked conics is degenerate: A single orbit of dimension 7.

Proof. As we have already seen, we may take any (3, 1) pencil to its nor-
mal form, being parametrized by αw∞ + βu, where w∞ = xy + xz and
u = x2 + y2 − z2. If the marked conic is degenerate, then we have already
spotted it. As the stabilizer of the normal form has dimension 2, then this
orbit has dimension 6. On the other hand, if the marked conic is irreducible,
then we may find a particular t ∈ C for which the transformation Mt maps
it to u. Then, the remaining transformations that preserve u are only Ys, so
the stabilizer of this marked pencil has dimension 1, and hence the orbit is
7-dimensional.

Now consider that there are two marked conics in the pencil. If one is
degenerate, we fall back to the previous case and reach a single 7-dimensional
orbit. If both marked conics are irreducible, then we may first set one of them
to u. Next, with the help of Ys we may still move the other conic to any
desired location on the pencil, other than w∞ and u, of course. To see why, let
us consider the action of Ys on these generating conics.
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Ys.w∞ = 1
4s3 w∞, Ys.u = 1

4s2 u.

Therefore, the conic of coordinates [α : β] ∈ CP1 is sent by Ys to the element
of coordinates [α : sβ] for s ∈ C∗. This allows us to place the second marked
conic at any available position in the pencil and it also shows that the only
transformation that preserves this marked pencil is the identity, so we have an
orbit of dimension 8.

In the figure below, we highlight u = x2 + y2 − z2 and the arbitrary conic
v = w∞ + u = x2 + y2 − z2 + xy + xz.

Figure A.4: Normal form of the (3, 1) pencil.

A.3.5

Complex (4) Pencil

There are two kinds of pencils where the four common points coincide in
a single point P ∈ CP2. The first, which we name (4), contains irreducible
conics, while the second, named (4∗), has only degenerate conics.

Every pair of conics of the (4) pencil have a contact of order 4 at P . There
is a single degenerate conic that satisfies this condition, the double common
tangent to the other conics at P . Therefore, this is the second and last instance
where the discriminant has a triple root.

Just as the last case, it is necessary to give additional information about the
contact at P in order to uniquely determine a pencil of type (4). One must
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localize a point P ∈ CP2, give the common tangent through this point, and
provide two values k ∈ C∗ and k′ ∈ C that describe respectively the common
values of y′′(0) and y′′′(0) of every nondegenerate conic of the pencil. Therefore,
the manifold of the (4) pencils is of complex dimension 2 + 1 + 1 + 1 = 5 and
codimension 3 in the space of all pencils.

Normal form of the (4) pencil

One may find a projective transformation that sends the common point to
P = [0 : −1 : 1] and the common tangent to y + z = 0. This conditions are
very mild, as we still have a 3-dimensional family of conics that satisfy them.
There is a group of projective transformations that acts transitively on this
family, so we may impose that a particular conic u = x2 + y2 − z2 belongs
to the pencil in normal form. By doing so, we reach the normal form of the
pencil, it is generated by the following conics:

w∞ = (y + z)2, u = x2 + y2 − z2.

The demand that u belongs to the pencil is equivalent to setting the two
conditions on the curvature at the common point P , which in this case are
k = 1 and k′ = 0. Now every irreducible conic in the pencil has these
characterizing quantities of the pencil. If we consider only the conics that abide
by these values, we obtain a one-dimensional family of conics which is precisely
the pencil we are after. It will be parametrized once again by αw∞ + βu with
[α : β] ∈ CP1. Notice, however, that u is an arbitrary irreducible conic of the
pencil, so there are transformations of the stabilizer of the pencil that do not
preserve u, mapping it instead to another irreducible conic of the pencil.

Lemma A.3.9. The stabilizer subgroup of the normal form of the (4) pencil
is 3-dimensional, and each of its elements may be written in the form Mt.Nr,s,
with r, s, t ∈ C and r ̸= s, where:

Mt =


1 0 0

0 −t+ 3
2 −t+ 1

2

0 t− 1
2 t+ 1

2

 , Nr,s =


2(s− r) 2r 2r

−2r(s− r) (s− r)2 + 1 − r2 −(s− r)2 + 1 − r2

2r(s− r) −(s− r)2 + 1 + r2 (s− r)2 + 1 + r2

 .

Proof. We obtain the stabilizer for the normal form of the (4) pencil in a
similar fashion as we did for the (3, 1) pencil. Let us consider the same four
points in general position: P = [0 : −1 : 1], Q = [0 : 1 : 1], P ′ = [1 : 0 : 0]
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and Q′ = [1 : 0 : 1]. The transformations Nr,s belong to the stabilizer of the
conic u, although they might move its individual points around. On the other
hand, the transformations Mt might not preserve the conic u at all. Naturally,
all transformation in the stabilizer has P as a fixed point and must preserve
the line y + z = 0, which is why the point P ′ must be mapped to a point in
this very line. We obtain the formula for Nr,s by considering the image of the
four points in question.

P
Nr,s7−−→ P, Q

Nr,s7−−→ [2r : 1 − r2 : 1 + r2],

P ′ Nr,s7−−→ [1 : −r : r], Q′ Nr,s7−−→ [2s : 1 − s2 : 1 + s2].

As one may observe, both Q and Q′ are mapped to points in u, their images
being determined by the values of r and s respectively. Neither can be ∞,
otherwise their image would be P , and they also cannot have the same image,
which is why r ̸= s. The image of P ′ is determined by the same parameter r,
and there is a good reason for it. Since P ′ is a point on the tangent line to u
through Q, then its image must also be on the tangent line to the image of
u through the image of Q. The prescribes image of P ′ is the one that results
in the image of u being itself. We can be sure that Nr,s preserves u in two
ways. Algebraically, we may do the calculations and obtain Nr,s.u = 1

4(s−r)2u.
Geometrically, we observe that the image of u is a conic that must be tangent to
the line through Nr,s.P

′ and P at P and to the line through Nr,s.P
′ and Nr,s.Q

at Nr,s.Q. Then it is uniquely determined by the position of an additional point
that it passes through, and since Nr,s.Q

′ belongs to u, then Nr,s.u = u.

The transformation Mt is also defined by the images of the same four points.

P
Mt7−→ P, Q

Mt7−→ [0 : 1 − t : t],

P ′ Mt7−→ P ′, Q′ Mt7−→ [1 : 1
2 − t : 1

2 + t].

It preserves both P and P ′. Consequently, the tangent line to the image of
u through the image of Q must also pass through P ′, since it did before the
action of Mt. The restriction that the image of Q belongs to the line x = 0
guarantees that the curvature of the new conic satisfies k′ = 0 at P . This can
be more clearly observed in an affine chart, since two points of an irreducible
conic have parallel tangents if and only if the segment joining them passes
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through the center of the conic. In addition, the normal to a point in a conic
passes through the center if and only if the point is a vertex, which means that
k′ = 0 at that point. This is precisely the situation for both P and Mt.Q, so
they are both vertices of the conic Mt.u.

The location of the final image Mt.Q
′ is the single point on the line x−y−z = 0

that results in the curvature of Mt.u at P being k = 1. Since we already know
that Mt.u is tangent to the line y+z = 0 at P and to the line ty− (1− t)z = 0
at Mt.Q, then it is uniquely determined by the position of Mt.Q

′. We search
for the appropriate location along the line x− y− z = 0, because as P already
belongs to this line and to the image of u, there can only be one other point
that belongs to both of these curves simultaneously. At this point, it is the
algebraic description of Mt.u that will lead us to the appropriate image of Q′.
One may check that the only conic in the pencil in normal form that passes
throughMt.Q = [0 : 1−t : t] is v = (2t−1)w∞+u = (2t−1)(y+z)2+x2+y2−z2.
Finally, its intersections with the line x − y − z are P and [1 : 1

2 − t : 1
2 + t],

which is why it must be the image of Q′ in order to assure that the curvature
of Mt.u at P satisfies k = 1.

Marked (4) pencil

Once again, there is a single degenerate conic in a (4) pencil, so we have the
freedom to pick the position of a couple of irreducible marked conics.

Proposition A.3.10. There are two orbits of (4) pencils marked with a single
element:

i. The marked conic is irreducible: A single orbit of dimension 6;

ii. The marked conic is degenerate: A single orbit of dimension 5.

In addition, there are two orbits of (4) pencils marked with an unordered pair
of conics.

i. Both marked conics are irreducible: A single orbit of dimension 7;

ii. One of the conics is degenerate: A single orbit of dimension 6.

Proof. If we have a single marked conic in our (4) pencil, then either it is
degenerate, so it must be the double line and it is preserved by the whole
stabilizer of the normal form, resulting in a 5-dimensional orbit; or it is
irreducible, in which case it can be sent to u = x2 + y2 − z2 by applying the
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action of the suitable Mt transformation. Then, the stabilizer of this marked
pencil is given by the transformations Nr,s, a 2-dimensional Lie group, so we
have an orbit of dimension 6.

If there are two marked conics on the pencil, then either one of them is
degenerate and we fall back to the previous case of a 6-dimensional orbit;
or both of them are irreducible, so we may take one of them to u and then
move the other one using the Nr,s transformations. Algebraically, their actions
on the generating conics of the pencil are:

Nr,s.w∞ = 1
4 w∞, Nr,s.u = 1

4(s− r)2 u.

The different multiples obtained above allow us to manipulate the pencil, as the
element of coordinates [α : β] is sent to the one of coordinates [(s− r)2α : β].
Here we notice a difference between the real and the complex settings. In the
real case, the sign of the ratio of the coefficients is preserved, while in the
complex one we have full freedom. We may then settle v at the coordinates
[1 : 1] and obtain v = x2 + 2y2 + 2yz.

Finally, we describe the group of symmetries that preserve w∞, u and v. Since
it already has three elements determined, every transformation of this group
acts trivially on the pencil preserving every conic. We already know how the
transformations Nr,s act algebraically on w∞ and on u, so it is easy to find
the necessary relation on the parameters in order to obtain a symmetry of the
marked pencil, we just need (s − r)2 = 1, in other words, s − r = ±1. The
fact that there are two possible values for s − r corresponds to the presence
of the involution N0,−1 : [x : y : z] 7→ [−x : y : z] in the group. In the end,
we have proved that the group of transformations that preserve the (4) pencil
marked with two irreducible conics is < N0,−1, Nr,r+1 >, a 1-parameter family
with two connected components. Therefore, the orbit of such marked pencil
has dimension 7.

Nr,r+1 =


2 2r 2r

−2r 2 − r2 −r2

2r r2 2 + r2

 .



Appendix A. Pencils of Conics 146

In the following figure we highlight u = x2 + y2 − z2 and the conic
v = x2 + 2y2 + 2yz corresponds to the parameter [1 : 1] of the pencil.

Figure A.5: Normal form of the (4) pencil.

A.3.6

Complex (4∗) Pencil

The other possibility of pencil where the four common points meet is the one
that contains two degenerate conics with a contact of order 4 at a point P .
For example, two pairs of lines such that all four lines intersect simultaneously
at P . Alternatively, one may consider two double lines that intersect at P . In
the complex case which we study here, these two descriptions provide a same
type of pencil. To see this, let us consider the following example. Let u = xy

and v = (x + ay)(x + by), with a, b ∈ C∗ and a ̸= b, be two degenerate conics
composed by a pair of distinct lines each. They have an intersection of order
4 at P = [0 : 0 : 1], so we consider their pencil

αu+ βv = αxy + β(x+ ay)(x+ by) = βx2 + (α + (a+ b)β)xy + abβy2.

To find the double lines in this pencil one has to evaluate the minor δ, which
is a homogeneous polynomial of degree 2 in α, β. Since its roots correspond to
the double lines we can already tell that this pencil has at most two of them.
In fact this is the only type of pencil that can have more than one double
line, since the presence of two such conics implies the configuration (4∗) for
the common points.
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δ = abβ2 − 1
4
(
α2 + 2(a+ b)αβ + (a+ b)2β2

)
= −1

4
(
α2 + 2(a+ b)αβ + (a− b)2β2

)
.

(A.1)

Now we evaluate the discriminant of the quadratic polynomial
α2 + 2(a+ b)αβ + (a− b)2β2 to obtain 16ab. Therefore, since a and b are
non zero, δ has two distinct roots and thus the pencil has two distinct double
lines. Notice that this will result in two different kinds of pencil in the real
setting depending on the sign of 16ab, because if it is negative, then there will
be no double line in the real pencil.

Having always two double lines in the (4∗) pencil, we can easily calculate the
dimension of this family. The pencil is determined by two lines in CP2, which
by duality corresponds to picking two points of CP2. So the family of (4∗)
pencils is a manifold of complex dimension 4 and codimension 4.

As we have seen in the previous type of pencil, an irreducible conic cannot have
a contact of order 4 at P with more than one degenerate conic. This implies
that every conic in this kind of pencil must be degenerate, and so it is the first
type of the list whose discriminant is identically zero.

Normal form of the (4∗) pencil

One can find a projective transformation that sends the single common point
to P = [0 : 0 : 1] and the defining lines of the pencil to x = 0 and y = 0. Thus
the double lines are given by:

w∞ = x2, w0 = y2.

We may then parametrize the pencil as αw∞ + βw0 with [α : β] ∈ CP1.

Lemma A.3.11. The stabilizer subgroup of the normal form of the (4∗) pencil
is generated by the involution N and the 4-parameter family of transformations
Ma,b,r,s, with a, b, r, s ∈ C, a ̸= 0 and r + as− b ̸= 0 as below.

Ma,b,r,s =


1 0 0
0 a 0

b− as b− r r + as− b

 , N =


0 1 0
1 0 0
0 0 1

 .
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Proof. For a projective transformation to preserve the normal form of the (4∗)
pencil, it must either preserve w∞ and w0 or interchange them. The involution
N is responsible for the case where the double lines are swapped. For the case
where they are preserved, we take three auxiliary points once again, so consider
P ′ = [1 : 1 : 1], Q = [1 : 0 : 1] and Q′ = [0 : 1 : 1]. Since the lines x = 0
and y = 0 are preserved, Q and Q′ must stay on them and so their images
are [1 : 0 : r] and [0 : 1 : s] respectively, with r, s ∈ C. As for P ′, it is free to
move around CP2, we just have to take care to avoid the collinearity of any
three image points. Its image is defined by two new parameters [1 : a : b].
The location of these four images uniquely define the transformation Ma,b,r,s

presented in the statement of the lemma. The determinant of the matrix
indicates the conditions on the four parameters so that there is no alignment
of the images. det(M) = a(r + as − b) ̸= 0, so a ∈ C∗ and b, r, s ∈ C with
r + as− b ̸= 0.

Marked (4∗) pencil

There are two special conics in the (4∗) pencil, the double lines. We have the
freedom to interchange them and to freely place a third conic anywhere on the
pencil.

Proposition A.3.12. There are two orbits of (4∗) pencils marked with a single
element:

i. The marked conic is not a double line: A single orbit of dimension 5;

ii. The marked conic is a double line: A single orbit of dimension 4.

In addition, there are three orbits of (4∗) pencils marked with an unordered
pair of conics.

i. Both marked conics are not double lines:
Infinitely many orbits of dimension 5 described by an invariant;

ii. A single marked conic is a double line: A single orbit of dimension 5.

iii. Both marked conics are double lines: A single orbit of dimension 4.

Proof. If the marked conic is a double line, we may easily put the pencil in
normal form, sending it to w∞. Since there is a 4-dimensional stabilizer, this
orbit has also dimension 4. If the marked conic is not a double line, then first
we put the pencil in normal form and then we consider the action of Ma,b,r,s

on the generating conics.
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Ma,b,r,s.w∞ = w∞, Ma,b,r,s.w0 = 1
a2 w0.

Despite having so many degrees of freedom, we see that only one of the four
parameters matters in terms of the action produced on the pencil. We may
use it to transform the pencil, noticing just as in the (4) pencil case that
there is a difference between the real and the complex setting due to the even
power on the resulting multiple. Indeed, the element of coordinates [α : β]
is mapped to [a2α : β], so the sign of the ratio between the coefficients is
preserved if we only consider real projective transformations. In the complex
case, on the other hand, we have complete freedom to place the marked conic
anywhere in the pencil, except for the double lines, of course. We may set
it at u = w∞ − w0 = x2 − y2, for example. What is left is a stabilizer of
dimension 3 with four connected components, so the orbit has dimension 5.
When a = ±1, the transformations M±1,b,r,s preserve the whole pencil. We
highlight the involution M−1,1,1,−1 : [x : y : z] 7→ [x : −y : z], which together
with the involution N : [x : y : z] 7→ [y : x : z] are responsible for the four
connected components of the stabilizer of the (4∗) pencil marked with a conic
that is not a double line. The action of N on the pencil is also clear, it maps
the conic of coordinates [α : β] to the one with coordinates [β : α]. This shows
us that the two fixed conics under the action of N are w∞ +w0 = x2 + y2 and
w∞ − w0 = x2 − y2.

Next, we consider the cases where there are two marked conics. If at least
one of them is a double line, we fall back to the previous cases of a single
marked conic. If both are not a double line, then we first put the pencil in
normal form and take one of the marked conics to u = x2 − y2. Now, we have
the 3-dimensional stabilizer that preserves {w∞, w0, u} and hence the whole
pencil if the double lines are not swapped. On the other case, we just get the
action of N , so if the other marked conic has coordinates [c : 1] for some
c ∈ C \ {0, 1}, then it is mapped to the conic in the pencil of coordinates
[1 : c] = [1/c : 1]. Curiously, this has the same effect as changing which of the
unordered marked conics is set to u, as first explained in Proposition A.3.4
for the marked (2, 1, 1) pencils. Therefore, there are infinitely many orbits of
dimension 5 for the (4∗) pencils with two marked conics that are not double
lines, each orbit being characterized by an invariant c ∈ C \ {0, 1} with |c| ≤ 1
and identified conjugate pairs in the boundary.

In the following figure, we highlight u = x2 − y2 and an arbitrary conic
v = x2 − 4y2 which is associated to the parameter [1 : −4] of the pencil.
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Figure A.6: Normal form of the (4∗) pencil.

A.3.7

Complex (∞, 1) Pencil

At this point, there are only the cases of collinearity of the common points
left to consider. If this happens, then the line ℓ through the collinear common
points is necessarily a component of every conic of the pencil, being thus a
common line. This already implies that every conic must be degenerate, so the
discriminant is identically zero once again.

If the fourth common point P does not belong to the common line ℓ, then
the other line that constitutes each conic of the pencil must pass through P .
Therefore, this pencil is essentially the pencil of lines through P accompanied
by the common line ℓ. Since there are infinite many common points over
the common line plus an additional common point outside of ℓ of simple
intersection between the conics, we call this type of pencil (∞, 1). As the
second line of each pair must pass by P , which does not belong to ℓ, this
pencil has no double line.

A pencil of this kind is simply determined by a common line ℓ and a common
point P , so it is also of dimension 4 and codimension 4 in the space of all
pencils.

Normal form of the (∞, 1) pencil

One can find a projective transformation that sends the common point to
P = [0 : −1 : 1] and the common line to y = 0. For the first time, we do not
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have any distinguished conic to elect as the basis for the parametrization of
the pencil, so we provisionally use two arbitrary conics u and v. Each of them
is comprised of the line ℓ and a line through P , so let Q = [1 : 0 : 1] be the
intersection of the components of u and Q′ = [−1 : 0 : 1] be the intersection of
the components of v. With that, the generating conics of the pencil are given
by:

u = y(x− y − z), v = y(x+ y + z).

The pencil is parametrized by αu + βv with [α : β] ∈ CP1. There is no
intrinsically relevant element of the pencil to position in the normal form,
so it will be rather flexible.

Lemma A.3.13. The stabilizer subgroup of the normal form of the (∞, 1)
pencil is generated by the 4-parameter family of transformations Ma,b,r,s, with
a, b ∈ C, r, s ∈ C ∪ {∞}, r ̸= s, a− br − r ̸= 0 and a− bs− s ̸= 0 as below.

Ma,b,r,s =


r(a−bs−s)+s(a−br−r)

r−s
a a

0 1 0
(a−bs−s)+(a−br−r)

r−s
b b+ 1

 .

Proof. Any symmetry of the normal form of the (∞, 1) pencil must preserve
the point P and keep the points Q and Q′ on the line y = 0. In order to
uniquely define a projective transformation, we need a fourth point in general
position, so let us take P ′ = [0 : 1 : 0] and map it to an arbitrary point
[a : 1 : b] ∈ CP2, only taking care to avoid the collinearity of any three of their
images. In short, the transformation Ma,b,r,s is defined by:

P
Ma,b,r,s7−−−−→ P, Q

Ma,b,r,s7−−−−→ [r : 0 : 1],

P ′ Ma,b,r,s7−−−−→ [a : 1 : b], Q′ Ma,b,r,s7−−−−→ [s : 0 : 1].

We allow r, s ∈ C ∪ {∞} since there is no problem if one of them is mapped
to [1 : 0 : 0], we just have to guarantee that their images are distinct, so r ̸= s.
The transformation Ma,b,r,s is then given by the matrix in the statement of the
lemma. Its determinant is det(Ma,b,r,s) = −2 (a−br−r)(a−bs−s)

r−s
, which provides

us with good insight into the conditions on the parameters in order to avoid
collinearity of the images. Indeed, the line through P and P ′ contains Q if and
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only if a− br− r = 0, and it contains Q′ if and only if a− bs− s = 0, so these
two identities must be avoided.

Marked (∞, 1) pencil

There is no special conic in the (∞, 1) pencil, so we may place two marked
conics wherever we desire in the pencil with room to spare, as we could even
choose the location of a third marked conic if necessary.

Proposition A.3.14. The orbits of (∞, 1) pencils with increasing number of
marked conics are:

i. A single marked conic: A single orbit of dimension 5;

ii. An unordered pair of conics: A single orbit of dimension 6;

iii. An unordered triplet of conics: A single orbit of dimension 7;

iv. An unordered quartet of conics:
Infinitelly many orbits of dimension 7 described by an invariant.

Proof. First we take the pencil to its normal form and apply a suitable
transformation M0,0,r,−1 that takes the marked conic to u = y(x− y− z). Now
the group that preserves the pencil globally and that fixes u is 3-dimensional
and given by Ma,b,1,s, thus the orbit has dimension 5.

If we have a second marked conic, we just have to apply the suitable transfor-
mation M0,0,1,s that takes it to v = y(x+y+z), and we have left a 2-dimensional
stabilizer generated by Ma,b,1,−1, thus the orbit has dimension 6.

Ma,b,1,−1 =


b+ 1 a a

0 1 0
a b b+ 1

 .

We can place a third conic anywhere on the pencil, because the actions of
Ma,b,1,−1 on u and v result in:

Ma,b,1,−1.u = 1
−a+ b+ 1 u, Ma,b,1,−1.v = 1

a+ b+ 1 v.
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Since the resulting multiples are distinct if a ̸= 0, we may move the third
marked conic along the pencil. The ensuing stabilizer is M0,b,1,−1, which
preserves every conic in the pencil, so this orbit has dimension 7.

Finally, the position of the fourth marked conic is already determined, since
all transformations that preserve the other three must preserve every conic in
the pencil. However, we could permute the marked conics around, since the
set is unordered. By permuting the location of the first three marked conics
there are up to 6 possible locations for the fourth conic. This invariant is no
other than the cross-ratio of the four lines through P that are components of
the marked conics.

In the following figure, we highlight the common line ℓ, given by y = 0, and
two arbitrary conics u = y(x− y − z) and v = y(x+ y + z).

Figure A.7: Normal form of the (∞, 1) pencil.

A.3.8

Complex (∞) Pencil

Finally we arrive at last type of complex pencil of conics, in which the four
common points are aligned. This configuration yields once again a common line
ℓ that imposes all the conics of the pencil to be degenerate. However, since there
is no common point not on ℓ, the second factor of each conic is completely free.
This is a problem, because the family of conics that follow this description is
of complex dimension 2, so one must narrow the requirements further down in
order to obtain a pencil.
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Let us analyse one such pencil to obtain the additional geometric condition we
are after. Consider two degenerate conics with a common factor referring to
the common line ℓ. In order for them to generate a pencil of type (∞), and not
of type (∞, 1), the other factors must produce lines that intersect over a point
P on ℓ. Consequently, the pencil generated by these conics is essentially the
pencil of lines through P accompanied by the common line ℓ, which contains
P . Notice that the double line given by two copies of ℓ belongs to this pencil,
independently of the particular point P . This description corresponds to the
degenerate case where either a or b is equal to zero in the example presented
for the pencil of type (4∗) (A.1). One can verify that in this case the minor δ
has a double root which is associated to the double line ℓ, the only double line
in this pencil.

Therefore, a pencil of type (∞) is determined by a common line and an
additional point on it. This shows that the submanifold of such kind of pencil
is of complex dimension 2 + 1 = 3, and of codimension 5, being the most
degenerate type of complex pencil of conics.

Normal form of the (∞) pencil

The (∞) pencil is the one with the least amount of restriction with respect to
its normal form. The best one can do is to fix the common line to y = 0 and
the common point at P = [0 : 0 : 1]. There is only one distinguished conic in
this pencil, the double line, so in order to be able to parametrize the pencil,
we provisionally pick an arbitrary conic u to serve as the second generating
conic.

w∞ = y2, u = y(x− y).

The pencil is then parametrized by αw∞ + βu with [α : β] ∈ CP1.

Lemma A.3.15. The stabilizer subgroup of the normal form of the (∞)
pencil is given by the 5-parameter family of transformations Ma,b,c,d,t, with
a, b, c, d, t ∈ C, a− c ̸= 0 and t(a− c) − (b− d) ̸= 0 as below.

Ma,b,c,d,t =


a− c a+ c 0

0 2 0
b− d b+ d t(a− c) − (b− d)

 .

Proof. A projective transformation preserves the normal form of the (∞) pencil
if and only if it preserves the line y = 0 and has P as a fixed point. In order
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to obtain a uniquely defined transformation that meet these conditions, let us
consider its action over the auxiliary points P ′ = [1 : 0 : 1], Q = [1 : 1 : 0] and
Q′ = [−1 : 1 : 0] as follows:

P
Ma,b,c,d,t7−−−−−→ P, Q

Ma,b,c,d,t7−−−−−→ [a : 1 : b],

P ′ Ma,b,c,d,t7−−−−−→ [1 : 0 : t], Q′ Ma,b,c,d,t7−−−−−→ [c : 1 : d].

The transformation defined by these mappings is the one in
the statement of the lemma. The determinant of its matrix is
det(Ma,b,c,d,t) = 2(a− c)(t(a− c) − (b− d)), and it once again gives us the
relations we should avoid to prevent the collinearity of the images, as a−c = 0
if and only if the images ofQ andQ′ are aligned with P , and t(a−c)−(b−d) = 0
if and only if they are aligned with the image of P ′.

Marked (∞) pencil

The double line is the unique special conic in the (∞) pencil, so we may place
up to two marked conics anywhere along the pencil.

Proposition A.3.16. There are two orbits of (∞) pencils marked with a single
element:

i. The marked conic is not a double line: A single orbit of dimension 4;

ii. The marked conic is a double line: A single orbit of dimension 3.

In addition, there are also two orbits of (∞) pencils marked with an unordered
pair of conics.

i. Both marked conics are not double lines: A single orbit of dimension 5;

ii. One of the marked conics is a double line: A single orbit of dimension 4.

Proof. If the marked conic is a double line, then it becomes w∞ = y2 when the
pencil is put in normal form. The stabilizer of the pencil is 5-dimensional given
by Ma,b,c,d,t, so this orbit has dimension 3. If the marked conic is not a double
line, then one may use a projective transformation to map it to u = y(x− y).
The action of a generic transformation of the stabilizer of the normal form on
this conic yields:
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Ma,b,c,d,t.u = 1 − a

2(a− c)w∞ + 1
2(a− c)u.

Here we see that the condition for one such transformation to preserve u is
a = 1. This may also be observed geometrically, since for the line x − y = 0
to be preserved the image of Q must stay on that line, which happens if and
only if a = 1. Thus the group that preserves the pencil marked with u is 4
dimensional, given by M1,b,c,d,t, and hence this orbit has dimension 4.

If there are two marked conics, there are also two cases. If one of them is the
double line, we fall back to the previous case and obtain an orbit of dimension
4. On the other hand, if both are not the double line, then we may map one
of them to u and then map the other to v = y(x + y). It is possible to do so
because the action of M1,b,c,d,t on w∞ and u results in distinct multiples:

M1,b,c,d,t.w∞ = 1
4w∞, M1,b,c,d,t.u = 1

2(1 − c)u.

After the marked conics are set to u and v, the remaining stabilizer that
preserves them and also w∞ is a 3-dimensional Lie group generated by
M1,b,−1,d,t and the involution N : [x : y : z] 7→ [−x : y : z] that interchanges u
and v. Therefore, this orbit has dimension 5.

In the following figure, we highlight the common line ℓ, given by y = 0, and
two arbitrary conics u = y(x− y) and v = y(x+ y).

Figure A.8: Normal form of the (∞) pencil.
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A.4

The real space of conics

Now we move to the study of the real pencils of conics. As explained in
the A.1, they correspond to the lines of the space of real conics RP5 and
are parametrized by αu + βv where u and v are distinct real conics and
[α : β] ∈ RP1. As the discriminant polynomial ∆(αu + βv) is real, all of
its non real roots come in conjugate pairs. Because of that, at least one of the
roots is real, so any pencil has at least one degenerate conic. Furthermore, if
the expression has a multiple root, all the roots are necessarily real, and if two
real roots are known, then all roots are necessarily real. However, a real root
indicates that for certain real values of [α : β] we get a pair of lines, but it
can be a pair of complex lines, whose intersection is its only point present in
RP2, that is, a point that admits real coordinates. In addition, there might be
portions of the pencil where the conics are not present at all in RP2, because as
one passes over a degenerate element, the conics may have a different signature,
and the definite quadratic forms, of signature (3, 0) or (0, 3), do not have any
real point. Indeed, one can think of the cubic hypersurface in the space of conics
given by the expression ∆ = 0 aptly called the discriminant. This submanifold
divides the space into many connected components, and the signature of the
conics is constant in each of them. Just to be clear, since we are working in
the projectivized setting, the signature is not exactly well-defined, since the
multiplication by −1 inverses it, but we can still make the distinction between
the regions where the signature is (3, 0) or (0, 3) and those where it is (2, 1) or
(1, 2).

At this point it is important to explain in detail what we refer to as real line
and complex line. Basically we refer to the coefficients of its expression; if it is
possible to write it using only real terms, then it is a real line, otherwise we
call it a complex line. However, the geometric interpretation deserves a more
detailed explanation. An implicit equation, of real coefficients or not, manifests
itself partially over RP2 in the visual manner that we are used to, but it has also
hidden portions outside the real plane. A real line manifests itself in RP2 indeed
as a line, that is, as a one dimensional submanifold. A complex line on the other
hand, meets RP2 at a single point. Let us explain this phenomenon. Since its
equation is linear, its zero set is a copy of CP1 contained in CP2. Thinking of
it in terms of real dimensions, we have a submanifold of dimension 2 inside a
manifold of dimension 4. There is also the real projective plane RP2 inside of
CP2, which is another submanifold of dimension 2, but unlike the previous one,
it is not algebraic. Since they have complementary dimensions, the intersection
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of an arbitrary line with the real projective plane is, in general, a submanifold
of dimension 0, thus a set of discrete points. Notice, however, that if there is
more than one intersection, the submanifold of dimension 1 joining two of these
points must belong in its entirety to the intersection due to the linearity of the
expression. In this case, we know how to obtain its implicit equation that has
only real coefficients, so it is a real line. Therefore, there are two options, an
arbitrary line meets RP2 either at a single point, in which case it is a complex
line, or they meet over a one dimensional submanifold and we have a real line.

Coming back to the pencils of conics, we may once again think of them in
terms of the common points of intersections. If there are four real points, we
can easily tell the type of the pencil by looking closely at their configuration.
All of the 8 cases listed in the previous section, about complex pencils of conics,
have an analogous real version, but some of them are subdivided due to the
existence of complex common points. They necessarily come in conjugate pairs,
because as we are dealing with real conics, they are all symmetric with respect
to the complex conjugation. We will list all 13 types of real pencils, present a
normal form for each of them and analyse their stabilizer subgroups, including
the cases of pencils marked with one or two conics. Some types of real pencils
are directly analogous to the complex case, so their description will be brief as
we refer to the analysis in their corresponding complex version. On the other
hand, we expand on the idiosyncratic properties that some real pencils display.

The group of real projective transformations PGL(3;R) acts on the space of
real conics RP5 by sending lines into lines and preserving the type of pencil that
they correspond to. If we also want to work with the implicit equations and
make the distinction between different multiples of a same expression, then we
may consider the action of GL(3;R)/{Id,− Id} on R6. The illustrative figures
that accompany each type of pencil show the affine chart of RP2 given by
the condition z = 1, setting the line z = 0 as the line at infinity. Whenever
possible, we will prioritize the presence of circles on this chart to obtain the
normal form of each pencil.
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A.5

Classification of real pencils of conics

A.5.1

(1, 1, 1, 1) Pencil

The first type of pencil happens when its conics intersect in four distinct real
points in general position. In this type of pencil there are three degenerate
conics, all pairs of real lines. They are obtained by dividing the common points
into two pairs, which can be done in three different ways. The submanifold of
this kind of pencil is of real dimension 8, because one such pencil is determined
by the location of the four common points. This is an open submanifold of the
manifold of all real pencils of conics, which is the space of lines of RP5.

This type of pencil is completely analogous to the complex (1, 1, 1, 1) pencil,
one just has to change the field C for R in the analysis presented in Subsection
A.3.1. In normal form, the degenerate conics are given by:

w∞ = 1
2(−x+ y + z)(x− y + z) = −1

2x
2 + xy − 1

2y
2 + 1

2z
2,

w0 = 1
2(x+ y + z)(x+ y − z) = 1

2x
2 + xy + 1

2y
2 − 1

2z
2,

w1 = w∞ + w0 = 2xy.

The stabilizer of the normal form is isomorphic to the symmetric group S4, as
it corresponds to the permutations of the common points. The classification of
the marked pencils is also the same as displayed in A.3.2.

Figure A.9: Normal form of the (1, 1, 1, 1) pencil.
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A.5.2

(1, 1, 1, 1) Pencil

We consider now the first subdivision originating from the existence of common
points outside of the real projective plane. This type of pencil is thus the same
as the (1, 1, 1, 1) pencil in the complex setting, but it has a distinct structure
in the real point of view. It is the case in which the conics intersect in two real
points P and P ′ and in a pair of complex conjugate points Q and Q. As a set of
the space of real pencils, this is once again an open submanifold of dimension
8. The pencil is determined by the position of the real common points P and
P ′, which contribute with 4 degrees of freedom, plus the position of complex
common points Q and Q. The choice of a point in CP2 outside of the real plane
yields 4 more real degrees of freedom. Notice however that the position of Q
and Q are intertwined, since one determines uniquely the other. Therefore, we
have a total of 8 degrees of freedom to define the pencil.

Just as in the (1, 1, 1, 1) pencil, three pairs of lines are obtained by dividing
the common points into two pairs: PP ′, QQ / PQ,P ′Q / PQ,P ′Q. However,
while the first pair has a real expression, the other two only admit complex
implicit equations. In other words, the discriminant of this pencil has one real
root and two complex roots which are thus not attained in the real pencil. This
makes of this pencil a peculiar type, because in every other case where there
are irreducible conics, all the degenerate elements of the complex pencil also
belong to the real pencil.

Let us study the line QQ that joins two conjugate points from up close.
We affirmed that it is in fact a real line, let us show why that is the
case. The simplest explanation is that its equation is one of the factors
of a real degenerate conic whose other factor is real (the line that joins
P and P ′), thus its expression must also be real. We may also prove this
fact in general, without needing the context of the conic equation. Since
the line passes through Q and Q, its conjugate line also passes through
these same points and therefore must be the same line. Being invariant
under the complex conjugation, it must be a real line. A third way to
prove it consists in showing explicitly that this line has more than one real
point. If it contains two conjugate points Q = [ax + i bx : ay + i by : az + i bz]
and Q = [ax − i bx : ay − i by : az − i bz] then we may parametrize its complex
version by αQ+ β Q, where [α : β] ∈ CP1 is a complex projective parameter.
By taking [α : β] = [1 : 1] we obtain a first real point in this line
Q + Q = [2ax : 2ay : 2az]. On the other hand, if [α : β] = [1 : −1], we
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have a second real point Q−Q = [2i bx : 2i by : 2i bz] = [2bx : 2by : 2bz]. Notice
that these are indeed two different points of RP2, otherwise we would have:

Q = [ax + i ax : ay + i ay : az + i az] = [ax(1 + i) : ay(1 + i) : az(1 + i)] = [ax : ay : az],

thus Q would be a real point. As we have seen in A.4, if a line intersects RP2

in more than one point, then it must be a real line.

The other two pairs of lines are of a different nature, they comprise of two
complex lines that are not conjugates. A first line of the pair, for instance PQ,
cannot be real, otherwise it would also contain the point Q and we would have
thus a more degenerate type of pencil. Therefore, PQ is a complex line that
intersects RP2 in P , and the other line of the pair is also complex for the same
reason and intersects the real projective plane at a different point P ′. This
implies that those two lines are not a conjugate pair, so the implicit equation
of the pair cannot be real and hence it does not belong to the real pencil.

Normal form of the (1, 1, 1, 1) pencil

Concerning the normal form, we have for the first time a pair of complex
common points, which allow us to prioritize the presence of circles in the chosen
affine chart. Indeed, one can find a projective transformation that sends the
common points to P = [0 : −1 : 1], P ′ = [0 : 1 : 1], Q = [1 : i : 0],
Q = [1 : −i : 0]. These complex points are called the cyclic points, because a
real irreducible conic passes through them if and only if it is a circle in the affine
chart z = 1. Therefore, by fixing them as common points, all the nondegenerate
conics of the pencil become circles and we obtain a familiar pencil of circles.
The pairs of lines through the common points are given implicitly by:

PQ,P ′Q ↔ −1
2(−ix+ y + z)(ix+ y − z) = −1

2x
2 − 1

2y
2 − ixz + 1

2z
2,

PQ, P ′Q ↔ 1
2(ix+ y + z)(−ix+ y − z) = 1

2x
2 + 1

2y
2 − ixz − 1

2z
2,

PP ′, QQ ↔ 2xz.

As expected, only the last element of this list belongs to the real (1, 1, 1, 1)
pencil. Let us call it w∞ = 2xz. Notice that the conic u = x2 + y2 − z2

also belongs to this pencil, so we may parametrize the pencil by αw∞ + βu,
[α : β] ∈ RP1.
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Lemma A.5.1. The stabilizer subgroup of the normal form of the (1, 1, 1, 1)
pencil is isomorphic to Z2 × Z2.

Proof. Once we have the image of four points determined, there is little
flexibility left to transform the pencil. The only thing we can do is to permute
those points as we have seen for the (1, 1, 1, 1) pencil. However, as we should
only consider real projective transformations in this setting, the real common
points cannot be interchanged with the complex ones. Therefore, there are just
four possible symmetries, given by:

() : (x, y, z) 7→ (x, y, z),

(PP ′) : (x, y, z) 7→ (−x,−y, z),

(QQ) : (x, y, z) 7→ (−x, y, z),

(PP ′)(QQ) : (x, y, z) 7→ (x,−y, z).

This group of symmetries is isomorphic to Z2 × Z2.

Marked (1, 1, 1, 1) pencil

Proposition A.5.2. There are two kinds of orbits of (1, 1, 1, 1) pencils marked
with a single conic:

i. The marked conic is irreducible:
Infinitely many orbits of dimension 8 described by an invariant;

ii. The marked conic is degenerate:
A single orbit of dimension 8.

In addition, there are also two kinds of orbits of (1, 1, 1, 1) pencils marked with
an unordered pair of conics.

i. Both conics are irreducible:
Infinitely many orbits of dimension 8 described by a pair of invariants;

ii. A single conic is degenerate:
Infinitely many orbits of dimension 8 described by an invariant;

Proof. If the marked conic is degenerate, then when taken to the normal
form it must become w∞. The discrete stabilizer indicates that this orbit
has dimension 8. If the marked conic is irreducible, then all we can do is
apply the transformations of the stabilizer. Notice that two of them, namely
() : (x, y, z) 7→ (x, y, z) and (PP ′)(QQ) : (x, y, z) 7→ (x,−y, z), act trivially on
the pencil, that is, they preserve all conics. We have explained this phenomenon
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in the study of the (1, 1, 1, 1) pencil A.3.1; the double transpositions of
the common points act as the identity on the pencil. Consequently, the
only freedom we have to move the marked conic is via the transformation
(QQ) : (x, y, z) 7→ (−x, y, z). We observe that the conic u = x2 + y2 − z2 is
special in this pencil, since it is preserved by every symmetry of the pencil.
Indeed, the action of (QQ) yields:

(QQ).w∞ = −w∞, (QQ).u = u.

Therefore, the conic v = αw∞ + βu of parameter [α : β] ∈ RP1 is mapped
to the one given by [−α : β]. So up to applying this action, we may take the
marked conic to the one whose parameter is [c : 1] with c ≥ 0. This invariant
characterizes each of the infinitely many 8-dimensional orbits of this kind of
marked pencil.

If there are two marked conics and one of them is degenerate, we fall back to the
previous case. If both are irreducible, then the pair is uniquely characterized
by a pair of invariants (c, c′) ∈ R2, with c ̸= c′, as one conic has parameter
[c : 1] and the other, [c′ : 1]. The best we can do with the stabilizer of the
pencil is guarantee that c + c′ ≥ 0, observing that the equality holds if and
only if the conics are symmetric with respect to the action of (QQ).

In the figure below we highlight the conic u and the conic
v = x2 + y2 + 2xz − z2 = (x+ z)2 + y2 − 2z2, whose parameter is [1 : 1].

Figure A.10: Normal form of the (1, 1, 1, 1) pencil.
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A.5.3

(1, 1, 1, 1) Pencil

The third and last type of pencil where the four common points are distinct
and in general position happens when the conics of the pencil have four distinct
complex intersection, necessarily composed of two conjugate pairs P, P ,Q,Q.
Once again this family constitutes an open submanifold of dimension 8 of the
set of all real pencils. Such a pencil is defined by the location of P and Q, since
they automatically determine the position of the other common points, their
conjugates. As they are points outside of RP2, each one contributes with 4 real
degrees of freedom, adding up to give the 8 dimensions of the submanifold.

A (1, 1, 1, 1) pencil has three degenerate conics: a pair of real lines PP , QQ and
two pairs of complex lines PQ, PQ / PQ, PQ. Concerning the first pair, we
have previously shown that a line containing conjugate points, as does PP , is
a real line. For the other pairs, one can easily see that they are conjugate pairs
of lines, after all, the conjugate line to PQ passes through P and Q, thus it
can only be the line PQ. Because they are conjugate pairs of lines, they admit
real implicit equations and each pair meets RP2 at a single point, precisely in
the intersection of their components.

Normal form of the (1, 1, 1, 1) pencil

With a real projective transformation, one can send the common points to
P = [0 : i : 1],P = [0 : −i : 1], Q = [1 : i : 0], Q = [1 : −i : 0]. So once again
we obtain a pencil of circles. The degenerate conics of the normal form are:

PQ,PQ ↔ w∞ = 1
2(x+ iy + z)(−x+ iy − z) = −1

2x
2 − 1

2y
2 − xz − 1

2z
2,

PQ, PQ ↔ w0 = −1
2(−x+ iy + z)(x+ iy − z) = 1

2x
2 + 1

2y
2 − xz + 1

2z
2,

PP ,QQ ↔ w1 = w∞ + w0 = −2xz.

We parametrize the pencil as αw∞ + βw0, [α : β] ∈ RP1.

Lemma A.5.3. The stabilizer subgroup of the normal form of the (1, 1, 1, 1)
pencil is isomorphic to the dihedral group D4.

Proof. The only projective transformations that preserve the pencil are those
that permute the four common points. However, real transformations send
conjugate pairs of points simultaneously to a new pair of conjugate points, so
there are even fewer permutations available. Another way of formulating this
interdiction is to think in terms of permutations of the degenerate conics, after
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all, the pair of real lines cannot become one of the pairs of complex lines via a
real transformation. Therefore, only 8 permutations remain, 4 of which act as
the identity on the pencil, for they preserve the three degenerate conics and
thus all conics of the pencil.

() : (x, y, z) 7→ (x, y, z), (PP ) : (x, y, z) 7→ (−x,−y, z),

(PP )(QQ) : (x, y, z) 7→ (x,−y, z), (QQ) : (x, y, z) 7→ (−x, y, z),

(PQ)(PQ) : (x, y, z) 7→ (z, y, x), (PQPQ) : (x, y, z) 7→ (−z, y, x),

(PQ)(PQ) : (x, y, z) 7→ (z,−y, x), (PQPQ) : (x, y, z) 7→ (−z,−y, x).

In order to visualize the isomorphism with D4, picture the four common points
displayed in a square where conjugate points are in opposite corners. The
transformation that preserves the pencil are in bijection with the elements of
the dihedral group of that square and the group operations are respected, so
we have a group isomorphism. Notice that this group is not abelian.

Moreover, the stabilizer is generated by two transformations, the involution
I = (QQ) : (x, y, z) 7→ (−x, y, z) and the symmetry of order 4 given by
R = (PQPQ) : (x, y, z) 7→ (−z, y, x).

Marked (1, 1, 1, 1) pencil

Proposition A.5.4. There are three kinds of orbits of (1, 1, 1, 1) pencils marked
with a single conic:

i. The marked conic is irreducible:
Infinitely many orbits of dimension 8 described by an invariant;

ii. The marked conic is a pair of complex lines:
A single orbit of dimension 8;

iii. The marked conic is a pair of real lines:
A single orbit of dimension 8.

In addition, there are five kinds of orbits of (1, 1, 1, 1) pencils marked with an
unordered pair of conics.

i. Both marked conics are irreducible:
Infinitely many orbits of dimension 8 described by a pair of invariants;

ii. An irreducible and a pair of complex lines:
Infinitely many orbits of dimension 8 described by an invariant;
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iii. An irreducible and a pair of real lines:
Infinitely many orbits of dimension 8 described by an invariant;

iv. Two pairs of complex lines:
A single orbit of dimension 8;

v. A pair of complex lines and a pair of real lines:
A single orbit of dimension 8.

Proof. Consider first that the pencil has a single marked conic. When taken
to the normal form, if the marked conic is a pair of real lines, then the whole
stabilizer of the pencil preserves this marked conic, resulting in an orbit of
dimension 8. If it is a pair of complex lines, then it could occupy two different
spots on the pencil, either w∞ or w0. Naturally, the involution I does not
preserve this marked pencil as it interchanges these pairs of complex lines.
The transformation R also swaps these two conics, so the stabilizer of this
marked pencil is < R.I,R2 >, being generated by these two involutions, so it
is isomorphic to D2. In any case, we get again a single orbit of dimension 8.

If the marked conic is irreducible, then not much can be done, as the 4
transformations that do not preserve the whole pencil must act in the same
way on it. Indeed, since there is a copy of D2 that acts trivially, then the
group of remaining actions must be D4/D2 ∼= Z2. Algebraically, what these
transformations do is w∞ 7→ −w0, w0 7→ −w∞ and w1 7→ −w1. So the arbitrary
conic of the pencil u = αw∞ + βw0 is mapped to the conic given by the
parameter [β : α]. This allows us to map the marked conic to the one whose
parameter is [c : 1] with |c| ≤ 1 and c /∈ {0, 1}. This value c cannot be 0 or 1
because it would result in degenerate conics, w0 and w1 respectively. Another
conic stands out, when c = −1 we get v = −w∞ +w0 = x2 + y2 + z2, which is
preserved by the whole stabilizer of the unmarked pencil. Therefore, we have
an 8-dimensional orbit for each value of c ∈ [−1, 0) ∪ (0, 1), observing that the
signature of the conic is (2, 1) when c > 0, so the conic is present in RP2, and
it is (3, 0) when c < 0, so there is no point of the conic in RP2.

Now consider there are two marked conics. If one of them is a pair of real lines,
then we fall back to previous cases explained above. If both are pairs of complex
lines, then the whole stabilizer of the unmarked pencil preserves this marked
pencil too and we get the 8-dimensional orbit. If one is irreducible and the other
is a pair of complex lines, then we get two copies of the orbits characterized
by the invariant c presented in the last paragraph due to the location of the
marked degenerate conic. Finally, if both conics are irreducible, then we need
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two invariants to define an orbit. The first is the same c ∈ [−1, 0) ∪ (0, 1)
already explained, while the other we have no further control over. The other
marked conic is given by [d : 1] with d ∈ R and d /∈ {0, 1, c}. This concludes
the description of these 8-dimensional orbits given by two invariants.

In the figure below we highlight two symmetric conics with respect to the line
x = 0, which are permuted by this non trivial symmetry of the pencil. They
are designated by the parameters [1

3 : 1] and [3 : 1].

u = 1
3w∞ + w0 = 1

3
(
(x− 2z)2 + y2 − 3z2

)
,

v = 3w∞ + w0 = −
(
(x+ 2z)2 + y2 − 3z2

)
.

Figure A.11: Normal form of the (1, 1, 1, 1) pencil.

A.5.4

(2, 1, 1) Pencil

Let us now consider the case where the conics have a contact of order 2 at a
real point P and two simple intersections at two other real points Q and Q′.
In order to uniquely determine the pencil, it is necessary to indicate a real line
through P which will be the common tangent of the irreducible conics of the
pencil. In this way, there are 7 degrees of freedom to define a pencil of this
family, so it constitutes a submanifold of codimension 1 in the space of all real
pencils of conics.
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The nature of this type of pencil is completely analogous to the complex (2, 1, 1)
pencil, one just has to change the field C for R in the analysis presented in
Subsection A.3.2.

In normal form, the degenerate conics are given by:

w∞ = (x−y−z)(x+y+z) = x2−y2−2yz−z2, w0 = 2y(y+z) = 2y2+2yz.

The stabilizer subgroup of the normal form is generated by the 1-parameter
family of transformations Mt, with t ∈ R∗ and the involution N below.

Mt =


t 0 0
0 1 0
0 t− 1 t

 , N =


−1 0 0
0 1 0
0 0 1

 .

The classification of the marked pencils is also the same as displayed in A.3.4.
Notice that the invariant c must now be in [−1, 0)∪(0, 1). The ensuing marked
conic has signature (2, 1) when c > 0, and signature (1, 2) when c < 0.

In the figure below, we highlight a particular conic v just to show that in the
chosen affine chart the normal form contains a parabola.

Figure A.12: Normal form of the (2, 1, 1) pencil.
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A.5.5

(2, 1, 1) Pencil

Next, we have the case where the conics have a contact of order 2 at a real
point P and two conjugate complex intersections Q and Q. This kind of pencil
is very similar to the previous one, belonging to the same class in the complex
point of view. This is also a 7 dimensional family, so of codimension 1, because
there are 2 degrees of freedom to determine P , 1 to choose the common tangent
through P and 4 to fix the pair of conjugate points Q and Q.

In the pencil there are once again two degenerate conics, but this time one is
a pair of real lines and the other is a pair of complex lines. The complex pair
corresponds to the lines PQ and PQ, which naturally intersect at P , bearing in
mind that any conjugate pair of lines meets RP2 at a single point. Meanwhile,
the real pair of lines consists of the common tangent of the pencil paired with
the real line whose equation vanishes over the complex points Q and Q.

Normal form of the (2, 1, 1) pencil

In terms of the normal form, we will make good use of the complex common
points to obtain a pencil of circles in the chosen affine chart, as we have done
previously. One can find a projective transformation that sends the common
points to P = [0 : 0 : 1], Q = [1 : i : 0], Q = [1 : −i : 0] and that maps the
common tangent to the line x = 0. In this way, the degenerate conics become:

w∞ = (x+ iy)(x− iy) = x2 + y2, w0 = −2xz.

Just as in the (2, 1, 1) pencil, any symmetry of the pencil must preserve these
degenerate conics, which have distinct characteristics.

Lemma A.5.5. The stabilizer subgroup of the normal form of the (2, 1, 1)
pencil is generated by the 1-parameter family of transformations Mt, with
t ∈ R∗, and the involution N below.

Mt =


t 0 0
0 t 0
0 0 1

 , N =


1 0 0
0 −1 0
0 0 1

 .

Proof. Firstly, we may permute the complex points, an action provided by the
involution N : (x, y, z) 7→ (x,−y, z). Besides, there is a 1-parameter family of
symmetries that preserve all three common points. One such transformation
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Mt may by obtained by considering an auxiliary point P ′ = [0 : 1 : 1] on the
common tangent. Its image [0 : t : 1], with t ∈ R∗, must stay on this line and
one should avoid the collinearity with Q and Q, which is why it cannot be on
the line at infinity. Notice that Mt are simply homotheties of center (0, 0) and
ratio t in the affine chart z = 1. The group of all symmetries of the pencil is
thus generated by N and the family Mt.

Marked (2, 1, 1) pencil

Proposition A.5.6. There are three kinds of orbits of (2, 1, 1) pencils marked
with a single conic:

i. The marked conic is irreducible: A single orbit of dimension 8;

ii. The marked conic is a pair of complex lines: A single orbit of dimension 7;

iii. The marked conic is a pair of real lines: A single orbit of dimension 7.

In addition, there are four kinds of orbits of (2, 1, 1) pencils marked with an
unordered pair of conics.

i. Both marked conics are irreducible:
Infinitely many orbits of dimension 8 described by an invariant;

ii. An irreducible and a pair of complex lines:
A single orbit of dimension 8;

iii. An irreducible and a pair of real lines:
A single orbit of dimension 8;

iv. Both marked conics are degenerate:
A single orbit of dimension 7.

Proof. Consider the pencil marked with a single conic. When taken to the
normal form, if it is degenerate then the whole stabilizer of the unmarked pencil
also preserves the marked conic, because the pair of real lines and the pair
of complex lines cannot be interchanged by a real projective transformation.
Therefore, we reach orbits of dimension 7. If the marked conic is irreducible,
then we may map it anywhere we want inside the pencil due to the distinct
multiples that arise from the actions of the symmetries of the pencil on its
degenerate elements.
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Mtw∞ = 1
t2
w∞, Mtw0 = 1

t
w0,

Nw∞ = w∞, Nw0 = w0.

One may notice that the behaviour is exactly the same as in the (2, 1, 1) pencil.
After we set the marked conic at u = w∞+w0 = x2−2xz+y2 = (x−z)2+y2−z2,
the stabilizer of this marked pencil is only {Id, N}, so we get an orbit of
dimension 8.

Now let us take a pencil marked with two conics. If at least one of them is
degenerate, we fall back to one of the previous cases. If both are irreducible,
we first set one to u. At this point, we already have 3 determined conics of
distinct nature in the pencil, so there is no liberty to move any other element
around. So the other marked conic v is defined by its parameter [c : 1], with
c ∈ R and c /∈ {0, 1}. We have thus an orbit of dimension 8 for each such value
of the invariant c.

In the figure below we highlight u and the conic which is symmetric to it with
respect to the common tangent, that is v = M−1.u = (x− z)2 + y2 − z2.

Figure A.13: Normal form of the (2, 1, 1) pencil.

A.5.6

(2, 2) Pencil

Let us now consider the case where the conics have a contact of order 2 at
two real points P and Q. This family of pencils constitutes a 6 dimensional
submanifold, so of codimension 2, because in order to uniquely determine such
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a pencil one must pick the points P and Q, each contributing with two degrees
of freedom, as well as indicate the common tangent at each of them, each
providing an additional degree of freedom adding up to 2 + 2 + 1 + 1 = 6.

The nature of this type of pencil is completely analogous to the complex (2, 2)
pencil, one just has to change the field C for R in the analysis presented in
Subsection A.3.3. In normal form, the degenerate conics are given by:

w∞ = x2, w0 = (y + z)(y − z) = y2 − z2.

The stabilizer subgroup of the normal form of the (2, 2) pencil is generated
by the 2-parameter family of transformations Mt,s, with t, s ∈ R∗, and the
involution N below.

Mt,s =


ts 0 0

0 t+s
2

t−s
2

0 t−s
2

t+s
2

 , N =


1 0 0
0 −1 0
0 0 1

 .

The classification of the marked pencils is also the same as displayed in A.3.6.
Notice that the invariant c must again be in [−1, 0) ∪ (0, 1). The resulting
marked conic has signature (2, 1) when c > 0, and signature (1, 2) when c < 0.

In the following figure we highlight an arbitrary conic of the pencil
v = 1

2w∞ + w0 = 1
2x

2 + y2 − z2.

Figure A.14: Normal form of the (2, 2) pencil.
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A.5.7

(2, 2) Pencil

Now we have the case where the conics have a contact of order 2 at two complex
points, necessarily conjugates, P and P . Just as in the previous case, this family
constitutes a submanifold of dimension 6 and codimension 2, because one such
pencil is determined by the position of P and by the common tangent through
it. Since P is a complex point, it contributes with four degrees of freedom. As
for the common tangent, it is also complex, so it adds two more degrees of
freedom. Once defined, the other common point P and its common tangent
are already uniquely determined, for they must be their conjugate pairs. This
fact is a consequence of a more general result that we prove in the following
lemma.

Lemma A.5.7. Let γ be a real algebraic curve in CP2. If P is a point of γ,
and ℓ is a tangent line to γ at P , then P is also a point of γ and l is a tangent
line to γ at P .

Proof. One way to verify that a line ℓ is tangent to γ at P is to parametrize
it as αP + βQ where [α : β] ∈ CP1 and Q is any other point of ℓ, then inject
this parametrization into the implicit equation of the curve and check that the
multiplicity of the root corresponding to the point P is of order at least 2. Let us
consider next the conjugate line l of parametrization αP + βQ and evaluate it
in the implicit equation of the same curve. We obtain the conjugate expression
of the one produced by ℓ, because the equation of γ is real. Therefore, there is
a root associated to the point P and it is of the same order as the one obtained
for P , so at least 2 by the hypothesis. We have thus shown that the line l is
tangent to γ at P .

This type of pencil has two degenerate conics, the double line PP , which is
a real line, and the pair of complex lines given by the common tangents at P
and P . We have just shown that this lines are necessarily conjugate, so they
meet at a single point of RP2 and the pair has a real implicit equation. The
double line once again corresponds to the double root of the discriminant.

Normal form of the (2, 2) pencil

In terms of the normal form, we can send the common points to the cyclic
points P = [1 : i : 0], P = [1 : −i : 0] to obtain a pencil of circles. Furthermore,
we can impose that the common tangents meet at the real point [0 : 0 : 1].
The centre of a conic in an affine chart is given precisely by the intersection
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of its tangents at its points contained in the line at infinity, in our case z = 0.
Consequently, all the irreducible conics of this pencil that are present in RP2 are
concentric circles. This remark gives us many details about the pencil already,
but we shall proceed without making use of it and we are going to arrive at
the same conclusion by analysing the group of symmetries of the normal form.
The degenerate conics of the pencil are:

w∞ = −z2, w0 = (x+ iy)(x− iy) = x2 + y2.

Lemma A.5.8. The stabilizer subgroup of the normal form of the (2, 2) pencil
is the 2-parameter family of transformations Mt,s, with (t, s) ∈ R2 \ {(0, 0)},
and the involution N below.

Mt,s =


t −s 0

s t 0

0 0 t2 + s2

 , N =


1 0 0
0 −1 0
0 0 1

 .

Proof. Firstly, we point out the transformation that permutes the common
points and common tangents given by N : (x, y, z) 7→ (x,−y, z). Other than
that, we can present a 2-parameter family of transformations Mt,s that preserve
the common points and common tangents. They may be obtained by using two
conjugate auxiliary points P ′ = [1 : i : 1], P ′ = [1 : −i : 1] and their respective
images [1 : i : t + si] and [1 : −i : t − si], with (t, s) ∈ R2 \ {(0, 0)}, that
remain on the common tangents. Notice that since we are considering only
real transformations, the image of P ′ is completely determined by the image
of P ′, so by considering the images of P , P , P ′ and P ′, we uniquely determine
the transformation Mt,s as presented in the statement of the lemma.

Marked (2, 2) pencil

Proposition A.5.9. There are four kinds of orbits of (2, 2) pencils marked with
a single conic:

i. The marked conic is irreducible and present in RP2:
A single orbit of dimension 7;

ii. The marked conic is irreducible and not present in RP2:
A single orbit of dimension 7;
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iii. The marked conic is a pair of complex lines:
A single orbit of dimension 6;

iv. The marked conic a double line:
A single orbit of dimension 6.

In addition, there are eight kinds of orbits of (2, 2) pencils marked with an
unordered pair of conics.

i. Both marked conics are irreducible and present in RP2:
Infinitely many orbits of dimension 7 described by an invariant;

ii. Both marked conics are irreducible and not present in RP2:
Infinitely many orbits of dimension 7 described by an invariant;

iii. Both marked conics are irreducible and only one is present in RP2:
Infinitely many orbits of dimension 7 described by an invariant;

iv. A pair of complex lines and one irreducible present in RP2:
A single orbit of dimension 7;

v. A pair of complex lines and one irreducible not present in RP2:
A single orbit of dimension 7;

vi. A double line and one irreducible present in RP2:
A single orbit of dimension 7;

vii. A double line and one irreducible not present in RP2:
A single orbit of dimension 7;

viii. A double line and a pair of complex lines:
A single orbit of dimension 6.

Proof. Consider first a pencil with one marked conic. If it is degenerate, then
the stabilizer of the unmarked pencil preserves it, so we get 6-dimensional
orbits. Next, we evaluate how the elements of the stabilizer act on the
degenerate conics of the pencil:

Mt,s.w∞ = 1
(t2 + s2)2 w∞, Mt,s.w0 = 1

t2 + s2 w0.

The different multiples obtained allow us to manipulate the pencil while pre-
serving the degenerate conics. The arbitrary conic associated to the parameter
[α : β] is sent to the one given by [α : (t2 + s2)β]. Notice however that there
is something remarkable in this pencil, because unlike all previous cases, the



Appendix A. Pencils of Conics 176

factor (t2 + s2) is always positive and thus it preserves the sign of the ratio
between the coefficients of the projective parameter. This means that the pen-
cil has two distinct intervals delimited by the degenerate conics and no real
transformation can make a conic go from one interval to the other. This fact is
related to the different signatures of the conics of the pencil. If the coefficients
α and β have the same sign, then the conic obtained has signature (2, 1) or
(1, 2). Whereas if α and β have opposite signs, then the conic has signature
(3, 0) or (0, 3) and thus it is not present at all in the real projective plane. It is
clear that it is impossible for a real transformation to relate conics of these two
distinct natures, after all, its action is given by a matrix congruence, which
always preserves the signature.

If the marked conic is present in RP2, then we may map it
to u = w∞ + w0 = x2 + y2 − z2. Otherwise, it may be mapped to
v = −w∞ + w0 = x2 + y2 + z2. In any case, there is still a 1-parameter group
with two connected components that acts trivially on the entire pencil. First,
we notice that the transformation N belongs to this group. It is responsible for
the existence of the two components of this stabilizer, one that preserves the
orientation of the conics and the other that inverts it. Secondly, we observe
that the condition on (t, s) for the transformation Mt,s to act trivially on
the pencil is t2 + s2 = 1. This implies that the group of symmetries of the
(2, 2) pencil marked with an irreducible conic is isomorphic to a pair of circles
S1 ⊔ S1, because it is generated by N and the family Mcos(θ),sin(θ). This orbit is
then 7-dimensional.

Mcos(θ),sin(θ) =


cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 .

One may recognize the rotations around the point (0, 0) in the affine chart
considered. They preserve every conic of the pencil, which must therefore be
concentric circles.

Now we move to the pencils marked with an unordered pair of conics. If at least
one of them is degenerate, we fall back to one of the previous cases explained
above. If both are irreducible, there are still three cases to consider due to the
different possible signatures. If at least one of the conics is present in RP2,
we set it to u = x2 + y2 − z2. At this point, the location of the other conic
is completely determined, say at [c : 1], with c ∈ R \ {0, 1}. This invariant
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determines the orbit, and since the stabilizer is still < Mcos(θ),sin(θ), N >, it is
7-dimensional.

If both marked conics are not present in RP2, then we may set one of them to
v = x2 + y2 + z2 and the other will go to [c : 1], with c < 0 and c ̸= −1.
This invariant once again determines the orbit, and since the stabilizer is
< Mcos(θ),sin(θ), N >, it is 7-dimensional.

In the following figure we highlight also the conic associated to the parameter
[4 : 1], that is v = x2 + y2 − 4z2.

Figure A.15: Normal form of the (2, 2) pencil.

A.5.8

(3, 1) Pencil

This is the case where the conics have a contact of order 3 at a real point P
and also intersect at another real point Q. As explained in Subsection A.3.4,
in order to uniquely determine a pencil of this family one must specify the
location of the common points P and Q, the common tangent through P and
yet another information about the intersection at P referring to the contact of
order 3. To do so, we fix an affine chart, say z = 1, then describe the variable
y as a function of x and evaluate the second derivative at the point P . Every
irreducible conic of the pencil share the same value for the second derivative at
this point, which means that they have the same curvature there. This quantity
is not a projective invariant, but, just as the common tangent, under the action
of a projective transformation every conic of the pencil keep sharing a common
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value for the second derivative of the function y(x) in the corresponding point
of contact. Since we consider here real equations, this value is necessarily real
and cannot be zero k ∈ R∗. Therefore, the family of (3, 1) pencils constitute a
submanifold of dimension 6 and codimension 2 in the space of all real pencils.

The nature of this type of pencil is completely analogous to the complex (3, 1)
pencil, one just has to change the field C for R in the analysis presented in
Subsection A.3.4.

In normal form, the degenerate conic of this pencil is given by:

w∞ = x(y + z) = xy + xz.

The stabilizer subgroup of the normal form of the (3, 1) pencil is 2-dimensional,
and each of its elements may be written in the form Mt.Ys, with t ∈ R and
s ∈ R∗, where:

Mt =


1 0 0

−t 1 0

t 0 1

 , Ys =


2s 0 0

0 s2 + 1 s2 − 1

0 s2 − 1 s2 + 1

 .

The classification of the marked pencils is also the same as displayed in A.3.8.

In the figure below, we highlight u = x2 + y2 − z2 and the arbitrary conic
v = w∞ + u = x2 + y2 − z2 + xy + xz.

Figure A.16: Normal form of the (3, 1) pencil.
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A.5.9

(4) Pencil

We arrive at the cases where the conics have a contact of order 4 at a real point
P . In the real setting, there are three types of pencil that meet this condition.
We begin with the one that has irreducible conics in the pencil. Just as in the
previous case, in order to determine a pencil of this family one must specify
the location of P , the common tangent and give further information about the
contact at P . In this case, one needs two real values, k ∈ R∗ and k′ ∈ R, for
the second and third derivatives respectively on the point referring to P in the
local parametrizations y(x) of the irreducible conics of the pencil. Therefore,
this family is a submanifold of dimension 5 and codimension 3 of the space of
all real pencils of conics.

The nature of this type of pencil is completely analogous to the complex (4)
pencil, one just has to change the field C for R in the analysis presented in
Subsection A.3.5.

In normal form, the degenerate conic is given by:

w∞ = (y + z)2.

The stabilizer subgroup of the normal form of the (4) pencil is 3-dimensional,
and each of its elements may be written in the form Mt.Nr,s, with r, s, t ∈ R
and r ̸= s, where:

Mt =


1 0 0

0 −t+ 3
2 −t+ 1

2

0 t− 1
2 t+ 1

2

 , Nr,s =


2(s− r) 2r 2r

−2r(s− r) (s− r)2 + 1 − r2 −(s− r)2 + 1 − r2

2r(s− r) −(s− r)2 + 1 + r2 (s− r)2 + 1 + r2

 .

The classification of the marked pencils is similar to the one displayed in A.3.10,
but there is a caveat due to the fact that we are no longer working over the
field C. This pencil has only one degenerate conic, so we use an arbitrary conic
u = x2 +y2 −z2 to parametrize it. The transformations Nr,s preserve this conic
u, indeed its action on the pencil is defined by:

Nr,s.w∞ = 1
4 w∞, Nr,s.u = 1

4(s− r)2 u.
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The different multiples obtained above allow us to manipulate the pencil, as the
element of coordinates [α : β] is sent to the one of coordinates [(s− r)2α : β].
Since we are working over R, the value (s− r)2 is always nonnegative, so this
could appear to be an obstacle to the placement of a second marked conic,
but that is not the case because the pair of marked conic is unordered. Indeed,
the geometric explanation for this phenomenon is that, since Nr,s preserves
u, then if the other conic v is contained in the region bounded by u that is
homeomorphic to the disc, its image must also remain in this same region.
Whereas, if it belongs to the region homeomorphic to the Möbius band, then
its image must again stay in the same region. That is why there is an algebraic
distinction between the two cases. Nevertheless, since the pair in unordered,
we may always pick them in such a way that v is contained in the region
homeomorphic to the disc. In other words, we may always place the marked
conics at u = x2 + y2 − z2 and v = w∞ + u = x2 + 2y2 + 2yz and get a single
7-dimensional orbit.

In the following figure we highlight both of these conics.

Figure A.17: Normal form of the (4) pencil.

A.5.10

(4∗) Pencil

From now on, there are only the completely degenerate pencils left, that is,
those where all the elements are pairs of lines. As we have seen in the complex
setting, there exists a kind of pencil where the four common points coincide
but there are no irreducible conics due to the presence of more than one
degenerate element. We have named it the (4∗) pencil, and there is naturally
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a corresponding real pencil, but it is actually subdivided into two distinct
types, which we are going to call (4∗) and (4∗∗). What distinguishes them is
the presence or absence of double lines. We have shown that the complex (4∗)
pencil always has two double lines which emerge as roots of the first minor δ.
In the real setting on the other hand, these roots could either be distinct and
real or a complex conjugate pair. So we name the prior case the (4∗) pencil,
and the latter the (4∗∗) pencil.

Having two double lines, the (4∗) pencil is uniquely determined by them. By the
duality of the projective plane, this corresponds to picking two points of RP2,
and therefore this family is a submanifold of dimension 4 and codimension
4 in the space of all real pencils. Notice also that it is contained inside the
discriminant hypersurface.

The nature of this type of pencil is closely related to the complex (4∗) pencil,
one just has to change the field C for R in the analysis presented in Subsection
A.3.6.

In normal form, the double lines are given by:

w∞ = x2, w0 = y2.

The stabilizer subgroup of the normal form of the (4∗) pencil is generated by
the involution N and the 4-parameter family of transformations Ma,b,r,s, with
a, b, r, s ∈ R, a ̸= 0 and r + as− b ̸= 0 as below.

Ma,b,r,s =


1 0 0
0 a 0

b− as b− r r + as− b

 , N =


0 1 0
1 0 0
0 0 1

 .

The classification of the marked pencils is similar to the one displayed in A.3.12,
but there is a caveat due to the fact that we are no longer working over the field
C. Consider the actions of Ma,b,r,s on the double lines that define the pencil.

Ma,b,r,s.w∞ = w∞, Ma,b,r,s.w0 = 1
a2 w0.

Despite having so many degrees of freedom, we see that only one of the four
parameters matters in terms of the action produced on the pencil. We may
use it to transform the pencil, but we do not have complete control over
it due to the even power on the resulting multiple. Indeed, the element of
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coordinates [α : β] is mapped to [a2α : β], so the sign of the ratio between
the coefficients is preserved. This means that the pencil is segmented by w∞

and w0 into two distinguished intervals with different signatures. In this case
it is quite clear, if α and β have the same sign, then the resulting conic
w = αw∞ + βw0 = αx2 + βy2 has signature (2, 0) or (0, 2), and hence it
is a pair of complex lines that meet at P = [0 : 0 : 1], whereas if they have
opposite signs, then we obtain conics of signature (1, 1), which are pairs of real
lines meeting also at P . Due to this difference with respect to the complex (4∗)
pencil, we now present and prove the orbits of marked real (4∗) pencils.

Marked real (4∗) pencil

Proposition A.5.10. There are three orbits of (4∗) pencils marked with a single
element:

i. The marked conic is a pair of real lines: A single orbit of dimension 5;

ii. The marked conic is a pair of complex lines: A single orbit of dimension 5;

iii. The marked conic is a double line: A single orbit of dimension 4.

In addition, there are six orbits of (4∗) pencils marked with an unordered pair
of conics.

i. The marked conics are two pairs of real lines:
Infinitely many orbits of dimension 5 described by an invariant;

ii. A real and a complex pair of lines:
Infinitely many orbits of dimension 5 described by an invariant;

iii. Two pairs of complex lines:
Infinitely many orbits of dimension 5 described by an invariant;

iv. A double line and a pair of real lines:
A single orbit of dimension 5;

v. A double line and a pair of complex lines:
A single orbit of dimension 5;

vi. Two double lines:
A single orbit of dimension 4.

Proof. Let us begin with the pencil with a single marked conic. If it is a
double line, we may put the pencil in normal form so that it becomes w∞.
The 4-dimensional group of transformations Ma,b,r,s preserves it, so this is a



Appendix A. Pencils of Conics 183

4-dimensional orbit. If the marked conic is a real pair of lines, we may use
a suitable Ma,1,1,1 to place it as u = w∞ − w0 = x2 − y2, whereas if it is a
complex pair of lines, we may put it as u′ = w∞ + w0 = x2 + y2. In either
case, the stabilizer of these marked pencils is < M±1,b,r,s, N >, so the orbit is
5-dimensional. Notice that N is present in this stabilizer because u and u′ are
very particular elements of the pencil. Indeed, the action of N interchanges w∞

and w0, so the conic of parameter [α : β] is mapped to the one of parameter
[β : α]. The only conics preserved by such action are precisely u and u′.

Now consider a pencil with a couple of unordered marked conics. If at least
one of them is a double line, we fall back to a previous case explained above.
If at least one of them is a real double line, we may set it to u and then the
only freedom we have left to move the other marked conic in the pencil is due
to the action of N . This allows us to place it at the conic of parameter [1 : c],
with c ∈ (−1, 0) ∪ (0, 1]. The other conic is a real pair of lines if c ∈ (−1, 0)
and it is a complex pair of lines if c ∈ (0, 1]. Lastly, if both marked conics are
pairs of complex lines, then we set one to u′ and the other is given by [1 : c′],
with c′ ∈ (0, 1). In all these cases, the stabilizer has dimension 3, so for each
value of c or c′ we have a 5-dimensional orbit.

In the following figure, we highlight an arbitrary conic v = x2 − 4y2 which is
associated to the parameter [1 : −4] of the pencil.

Figure A.18: Normal form of the (4∗) pencil.
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A.5.11

(4∗∗) Pencil

As we have previously explained, the complex (4∗) pencil has two distinct
versions in the real setting depending whether its double lines are real or
complex. In the (4∗∗) they are a conjugate pair of double lines, which therefore
have a contact of order 4 at a real point. Although these complex lines are
not present in the real pencil itself, they may be used to define it, just as
the complex common points were used in some previous types of pencil. One
may think of the real pencil (4∗∗) as a particular RP1 where all the conics are
real inside of the complex pencil, isomorphic to CP1, generated by these two
elements.

In order to determine a (4∗∗) pencil, one just needs to pick a complex line,
which in pair with its conjugate will be the two double lines of the pencil.
This is equivalent to choosing a point of CP2 by duality, but avoiding pure real
points. In any case, this gives rise to a submanifold of real dimension 4 and
codimension 4 in the space of all real pencils of conics.

Normal form of the (4∗∗) pencil

We are going to use the “virtual” double lines to define the normal form of
this pencil. One can find a projective transformation that sends the common
point to P = [0 : 0 : 1] and these special lines to x + iy = 0 and x − iy = 0.
Thus the double lines are given by:

w∞ = 1
2(x+iy)2 = 1

2(x2 +2ixy−y2), w0 = 1
2(x−iy)2 = 1

2(x2 −2ixy−y2).

Naturally, these conics cannot belong to the real pencil that we are studying,
but we can still use them to parametrize it in a clever way. Let us consider for
a moment the complex pencil generated by w∞ and w0.

(a+ ib)w∞ + (c+ id)w0 = 1
2
(
a+ c+ i(b+ d)

)
(x2 − y2) + i

(
a− c+ i(b− d)

)
xy.

If we want to find the real conics of this pencil, we just have to make sure
that all terms accompanying the imaginary unit i vanish. This simply means
b+ d = 0 and a− c = 0. Therefore we obtain:
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(a+ ib)w∞ + (a− ib)w0 = a(x2 − y2) − 2bxy.

With that, we have a real pencil parametrized in a peculiar way:
(α + iβ)w∞ + (α− iβ)w0 with [α : β] ∈ RP1.

Lemma A.5.11. The stabilizer subgroup of the normal form of the (4∗∗) pencil
is generated by the involution N and the 4-parameter family of transformations
Ma,b,θ,r, with a, b, r ∈ R, r ≥ 0, θ ∈ R/2πZ and r − a cos(θ) − b sin(θ) ̸= 0
presented below.

Ma,b,θ,r =


cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

a cos(θ) + b sin(θ) b cos(θ) − a sin(θ) r − a cos(θ) − b sin(θ)

 , N =


1 0 0
0 −1 0
0 0 1

 .

Proof. We obtain the expression of Ma,b,θ,r by once again considering the image
of 4 points in general position. Naturally any transformation of the stabilizer
must preserve P . This time we will need two complex auxiliary points, the
first Q = [1 : i : 0] which belongs to the line x + iy = 0 must stay on this
very line, so it is mapped to [1 : i : a + ib], where a, b ∈ R. This condition
automatically implies that its conjugate point Q = [1 : −i : 0] is sent to
[1 : −i : a − ib], so this gives us an extra condition for our transformation.
Finally, we consider P ′ = [1 : 0 : 1] whose image [cos(θ) : sin(θ) : r], with
θ ∈ R/2πZ and r ≥ 0, is relatively free, we just have to avoid a possible
alignment or coincidence of the images. These obstacles are detected by the
determinant det(Ma,b,θ,r) = r−a cos(θ)−b sin(θ), which explains the condition
in the statement of the lemma. The images of P , P ′, Q and Q′ uniquely
determine the transformation Ma,b,θ,r.

The involution N corresponds to the interchange of the “virtual” double lines
that defined the pencil, as N.w∞ = w0 and N.w0 = w∞.

Marked (4∗∗) pencil

Proposition A.5.12. There is only one orbit of (4∗∗) pencils marked with a
single conic:

i. The marked conic is a pair of real lines: A single orbit of dimension 5.

In addition, there is only one kind of orbit of (4∗∗) pencils marked with an
unordered pair of conics.
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i. Both marked conics are pairs of real lines:
Infinitely many orbits of dimension 5 described by an invariant.

Proof. The fact that the (4∗∗) pencil has only degenerate conics and no double
line implies that every conic is of the same nature, there is no distinguished
element on the pencil. When put in the normal form, the appearance in the
affine chart z = 1 is that of real pairs of perpendicular lines meeting at (0, 0).
In order to evaluate the freedom we have to move elements in the pencil, let
us check the action of the transformations Ma,b,θ,r on w∞ and w0.

Ma,b,θ,r.w∞ = 1(
cos(θ)+i sin(θ)

)2 w∞, Ma,b,θ,r.w0 = 1(
cos(θ)−i sin(θ)

)2 w0.

This time the conclusion is not so straightforward since w∞ and w0 do not
belong to the pencil, so we should see how the transformations act on an
arbitrary element (α+ iβ)w∞ + (α− iβ)w0 associated do the parameter [α : β]
instead. A careful calculation leads us to:

Ma,b,θ,r.
(
(α + iβ)w∞ + (α− iβ)w0

)
=
(
(cos(2θ)α + sin(2θ)β) + i(cos(2θ)β − sin(2θ)α)

)
w∞

+
(
(cos(2θ)α + sin(2θ)β) − i(cos(2θ)β − sin(2θ)α)

)
w0.

In other words, if we consider the action of Ma,b,θ,r on the pencil’s pa-
rameter, it maps the conic given by [α : β] to the one associated to
[cos(2θ)α + sin(2θ)β : cos(2θ)β − sin(2θ)α]. This shows us firstly that only the
parameter θ is relevant in regard to the transformation of the pencil, indeed it
corresponds to the rotation of the pair of lines around the origin in the afore-
mentioned affine chart. It also allows us to take a marked conic to an arbitrary
element, say u = w∞ + w0 = x2 − y2. Indeed, to send the conic of parameter
[α : β] to u, which has parameter [1 : 0], one just has to solve the trigonometric
equation for θ: cos(2θ)β − sin(2θ)α = 0 ⇐⇒ cot(2θ) = α/β. This shows that
there is only one orbit of (4∗∗) pencils with one marked conic. Next, we show
that the stabilizer of the pencil marked with u has dimension 3, resulting in a
5-dimensional orbit.

In order to find the group of symmetries of the pencil marked with u we look
for the transformations Ma,b,θ,r that preserve u. Its image under this action
has parameter [cos(2θ) : − sin(2θ)], so we find a condition for θ: it can only
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take four values θ ∈ {0, π/2, π, 3π/2}. This leaves us with a group comprised
apparently of four components of 3-parameter families of transformations.

Ma,b,0,r =


1 0 0
0 1 0
a b r − a

 , Ma,b,π/2,r =


0 −1 0
1 0 0
b −a r − b

 ,

Ma,b,π,r =


−1 0 0
0 −1 0

−a −b r + a

 , Ma,b,3π/2,r =


0 1 0

−1 0 0
−b a r + b

 .

However, since we are dealing with elements of PGL(3;R), there are
some special identifications when r = 0, because Ma,b,0,0 = Ma,b,π,0 and
Ma,b,π/2,0 = Ma,b,3π/2,0. This means that we may move continuously from any
Ma,b,0,r to any Ma′,b′,π,r′ . In any case, these transformation all act trivially on
the pencil, so they do not give us any liberty to move a second marked conic.
Geometrically, we see in the affine chart z = 1 that all conics of the pencil
are invariant under a rotation by π/2 around (0, 0), which justifies our state-
ment that the pair of lines are orthogonal at the origin. The transformation
M0,0,π/2,0 : (x, y, z) 7→ (−y, x, z) realizes this rotation, so let us name it R.

We still have, however, the involution N . It also preserves u, so it must be
considered in the stabilizer of the marked pencil. Its action on the pencil is
given by [α : β] 7→ [α : −β], thus it has two fixed points, namely the conics
whose parameters are [1 : 0] and [0 : 1]. Therefore, if we have a second marked
conic in the pencil whose parameter is [c : 1], we may use the action of N to
assure that c ≥ 0. If c = 0, so that the second marked conic is v = 2xy, then the
stabilizer of this pencil marked with two conics is< Ma,b,0,r, R,N >. Otherwise,
the stabilizer does not contain N , so it is < Ma,b,0,r, R >. In either case it is
a 3-dimensional stabilizer, so we get for each value of c ≥ 0 a 5-dimensional
orbit.

In the following figure we highlight u = x2 − y2 and v = 2xy, which are
invariant under the action of N .
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Figure A.19: Normal form of the (4∗∗) pencil.

A.5.12

(∞, 1) Pencil

We approach the end of the list of real pencils, having to consider only the
two remaining cases where the common points are not in general position,
that is, at least three of them are aligned. If that is the case, then every conic
of the pencil is necessarily degenerate and one of its factors correspond to
the line that contains those collinear points. Therefore, these types of pencil
actually contain a common line ℓ. The only distinction left is whether the
fourth common point P belongs also to this line or not. First we consider the
case where it is not on the common line. It forces every conic of the pencil to
pass through it, which has to be done by the other factor of the conics and
thus the pencil is essentially the pencil of lines through P accompanied by the
common line ℓ. Notice that there can be no double lines in this pencil. Since
there are infinitely many common point on the common line plus an additional
one elsewhere, we will name this pencil (∞, 1).

A pencil of this family is uniquely determined by a line in RP2 and a point
which does not belong to it. Therefore it constitutes a submanifold of dimension
4 and codimension 4 in the space of all real pencils of conics.

The nature of this type of pencil is completely analogous to the complex (∞, 1)
pencil, one just has to change the field C for R in the analysis presented in
Subsection A.3.7.
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In normal form, the pencil may be parametrized using the following arbitrary
conics:

u = y(x− y − z), v = y(x+ y + z).

The stabilizer subgroup of the normal form of the (∞, 1) pencil is gener-
ated by the 4-parameter family of transformations Ma,b,r,s, with a, b ∈ R,
r, s ∈ R ∪ {∞}, r ̸= s, a− br − r ̸= 0 and a− bs− s ̸= 0 as below.

Ma,b,r,s =


r(a−bs−s)+s(a−br−r)

r−s
a a

0 1 0
(a−bs−s)+(a−br−r)

r−s
b b+ 1

 .

The classification of the marked pencils is also the same as displayed in A.3.14.

In the following figure, we highlight the common line ℓ, given by y = 0, and
two arbitrary conics u = y(x− y − z) and v = y(x+ y + z).

Figure A.20: Normal form of the (∞, 1) pencil.
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A.5.13

(∞) Pencil

We have finally arrived at the last type of real pencil of conics, which happens
when all four common points are aligned. Just as in the previous case, this
obliges all the conics of the pencil to be degenerate and to have a common
factor referring to the common line ℓ. Unlike the (∞, 1) pencil, this one does
not have an additional common point not on the common line, so we will
name it simply (∞). The other components of the conics of the pencil must
intersect at a real point P , and since there can not be a common point out of
ℓ, this intersection must be a point of the common line. So there is in fact an
additional particular point that characterizes the pencil, it is just hidden in ℓ.
As a consequence, every other element of the pencil is a pair of lines where one
is ℓ and the other passes through P . This pencil is once again essentially the
pencil of lines through P accompanied by the common line. Notice, however,
that there is a double line in this pencil, which corresponds to a double root
of the minor δ.

To uniquely determine a pencil of this family one must pick a line in RP2 and
a point on that line. Therefore, it constitutes a submanifold of real dimension
3 and codimension 5 in the space of all real pencils of conics. This is thus the
most degenerate type of pencil.

The nature of this type of pencil is completely analogous to the complex (∞)
pencil, one just has to change the field C for R in the analysis presented in
Subsection A.3.8.

In normal form, the pencil is parametrized by the following double line w∞

and pair of lines u:

w∞ = y2, u = y(x− y).

The stabilizer subgroup of the normal form of the (∞) pencil is given by the
5-parameter family of transformations Ma,b,c,d,t, with a, b, c, d, t ∈ R, a− c ̸= 0
and t(a− c) − (b− d) ̸= 0 as below.

Ma,b,c,d,t =


a− c a+ c 0

0 2 0
b− d b+ d t(a− c) − (b− d)

 .
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The classification of the marked pencils is also the same as displayed in A.3.16.

In the following figure, we highlight the common line ℓ, given by y = 0, and
two arbitrary conics u = y(x− y) and v = y(x+ y).

Figure A.21: Normal form of the (∞) pencil.

This concludes our detailed study and classification of the real pencils of
conics.
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